
An Investigation of Chaos Theory Using
Supercomputing Techniques

Bryan Ward

June 12, 2007

Abstract
Chaos theory is the study of dynamic systems in which small dif-

ferences in the environment, can create large, unpredictable results.
The classic example of chaos theory is the Butterfly effect, or the the-
ory that a Butterfly flapping can effect large scale weather patterns
such as tornadoes and hurricanes even from hundreds of miles away.
Chaos Theory is also applicable in systems other than weather, such as
the stock market and physics. While these are very complex systems,
there are chaotic mathematical systems represented by fractal images
which this project aims to investigate. In this project distributed
computing algrithms will be used to investigate these fractals.

1 Introduction

1. Problem Statement
Generate and analyze several different fractals to gain more insight into
the complex topic of chaos theory. Distributed computing algorithms
will be learned and applied to this problem to increase performance.

2. Purpose and Goal
The purpose of this research project is to implement distributed com-
puting algorithms while investigating the complex topic of Chaos The-
ory. I chose this field for my project because Chaos Theory as fascinated
me for years. This subject lends itself to the multi-processor supercom-
puter or a computing cluster. Another goal of this project is for me to
learn about high performance computing.

1



2 Previous Work

Chaos Theory has many applications to numerous different real world. Lorenze
coined the phrase Chaos Theory while studying meteorology because there
are so many different variables that can have significant effects on weather
patterns, even if they are only minor initial changes. Chaos is also evident
in physics. One example could be letting a full balloon loose, the result is
an unpredictable flight. This is because the countless air molecules can have
differing effects, and the trajectory of the balloon is therefor unpredictable.
Some more recent research has been found showing that the structure of ar-
teries in the human body is chaotic and may be coded as such in the DNA.
Brain and heart functions may be chaotic as well.

Fractals have applications outside of the physical sciences as well. In
computer science, there is work being done to use fractals to generate more
realistic computer graphics. This not only creates more life like graphics,
but also speeds up the rendering process. Work has also been done to use
fractals to compress data, and especially images, using fractals.

3 Procedure

In this project the Mandelbrot and Julia set fractals were investigated. To
begin with code was written to generate each of these fractals in a gray scale
image on a single processor. This formed a basis for the rest of the project
and each iteration enhances or adds functionality to these original programs.

The next iteration for this project was to generate a series of Julia set
fractals to be strung together into a video. The program mencoder was used
to create the video from the individual frames. This iteration was still run
on a single processor.

The next logical step was begin using the Message Passing Interface (MPI)
to distribute the computational load of all of these frames to different pro-
cessors. This was tested on both the School Cray SV1 and the Sun cluster.
This was an excellent starting point for getting to know MPI because there
was very little data that had to be sent between processors.

To extend my knowledge of MPI, I then looked at distributing the work-
load of an individual fractal, such as a single frame of the Julia Set or the
Mandelbrot Set. This was done by breaking the image into blocks which
were then distributed to different processors. Each processor then iterates

2



through each point recording the result in RAM. Each processor then sends
the resulting array back to the master processor which compiles the fractal
images and write it to a single file.

Until this point every fractal generated was done in gray scale but no
study of fractals is complete without color. Different color schemes were
experimented with, each with differing weights given to the red, green, and
blue color components based on the escape iterations computed. This results
in banded images without as high a level of detail. The distance estimator
coloring algorithm was used to add more detail to the colors. In order to
produce valuable fractal images the colors had to be generated in the Hue -
Saturation - Value color space (HSV). These values had to be converted back
to the traditional Red - Green - Blue color space (RGB) to be output to the
file. The HSV color space allowed for the use of both the escape iterations
algorithm and distance estimator algorithm to both be used to increase the
detail of the colors.

The ”Buddhabrot” rendering algorithm was also written both for a single
processor and for MPI. This algorithm plots the iterates of points which are
in the Mandelbrot set. The resulting image is said to look like buddha, hence
the name. In this rendering algorithm increasing the number of iterations and
the number of points plotted drastically increases the clarity and precision of
the fractal image. With multiple processors the precision is achieved much
more quickly and easily.

Original file output was done in ASCII for easy reading and writing (by
the user). Binary file output was implemented to decrease the file size and
I/O time. This was especially useful when viewing very large fractal images
because the file had to be read into RAM to be viewed on the screen.

4 Testing and Analysis

In this project there were two types of testing, testing for proper results, and
testing for performance. The first of these two was rather simple in that there
are many fractal images on the internet of which results can be compared
to. Performance tests were done periodically to analyze the efficiency of
different algorithms and the performance increase with the addition of more
processors. In the case of MPI testing the results can be compared to the
results of its single processor counterpart. This would show not only if the
actual results are different, but also any differing performance in runtime.

3



Tests on the Cray were conducted using anywhere from 2-16 processors.
I have noticed that especially on the Cray, the more processors the program
is run on, the more time it takes for messages to be passed between the
processors. When a 12800 x 10240 pixel Mandelbrot fractal was generated
on the Cray using 16 processors, it took approximately 20 seconds on average
for each processor to iterate through it’s respective segment, but the entire
program took 83 seconds to run. This means that it took over a minute to
pass the data between the processors. This was still significantly faster than
running it on a single Cray processor which took 365 seconds.

After continuous hardware trouble with the Cray Supercomputer, final
performance tests were run on the Sun cluster. These results show that the
total time spent is equal to (iterations∗n)/p+(p−1)(tm)+k where n is the
number of pixels, p is the number of processors, and tm is the time spent in
message passing. This explains why the performance of n processors in not
n times faster than a single processor. It also validates the above hypothesis
that time spent in message passing increases with more processors.

5 Conclusion

In conclusion, using MPI and multiple processors the runtime is decreased.
The runtime is not reduced by the factor of the number of processors used,
because the processors must send messages to one another which can be
time consuming. Passing large amounts of data between processors takes
a substantial amount of time. Algorithms which utilize more processors
but reduce the amount of information needing to be passed between the
processors are the most efficient using MPI.

References

[1] Bourke, P., An Introduction to Fractals. Retrieved February 13, 2003,
from http://astronomy.swin.edu.au/ pbourke/fractals/fracintro

[2] Chaos Theory: A Brief Introduction. (n.d.). Retrieved January 24, 2007,
from http://www.imho.com/grae/chaos/chaos.html

4



[3] Devaney, R. L. (n.d.). The Fractal Geometry of the
Mandelbrot Set. Retrieved February 7, 2003, from
http://math.bu.edu/DYSYS/FRACGEOM/FRACGEOM.html

[4] Donahue, M. J., III (n.d.). An Introduction to Mathematical Chaos
Theory and Fractal Geometry. Retrieved February 7, 2003, from
http://www.duke.edu/ mjd/chaos/chaos.html

[5] Munafo, Robert. The Encyclopedia of the Mandelbrot Set. Retrieved
June 11, 2007, from http://www.mrob.com/pub/muency.html

5


