10

An Implementation of Artificial Physics Using AIBO Robots and the Pyro Programming Environment

Ankur Desai

Thomas Jefferson High School for Science and Technology

Naval Research Laboratories Artificial Intelligence Center

Introduction

Rationale

Historically, the field of robotics has been focused on the use of a single robot capable of a number of complex tasks. However, as the science matured, it became apparent that researchers were attacking the problem from the wrong angle. Not only are these highly complex robots difficult to build, the fact that a single robot is responsible for so many tasks means that a single malfunction can cause a multitude of problems. In recent years, the focus has shifted toward the use of large groups of more simple robots, working cooperatively. For example, while it is extremely difficult to design a single unmanned aircraft to take the place of a highly skilled fighter pilot, a large swarm of autonomous unmanned gliders could theoretically accomplish the same tasks (Lee, 2003).

As robotics begins this trend towards cooperative groups of robots (Ikemoto, Hasegawa, Fukuda & Matsuda, 2004), it has also become necessary to design artificial intelligence systems that are in turn much simpler. Instead of having a wide array of sensors and a powerful on-board computer, artificial intelligences must often rely on the data from a single sensor that can be processed quickly and easily. Thus, many of the current systems used to control groups of robots are based on biological behaviors. For example, the behavior of a flock of birds or a colony of ants can be modeled with a few simple rules (Oliveira, Fischer & Stepankova, 1999).

Unfortunately, one major problem that researchers face when experimenting with new forms of artificial intelligence is the vast proliferation of research platforms. While many computer scientists prefer to use very complex and powerful programming languages when designing new applications, those who specialize in robotics tend to favor simpler and more user-friendly languages. In addition, in order to control a specific type of robot, it is often necessary to program in specific languages. In research today, adapting a program to a certain robot is a very time consuming task that frequently inhibits the overall pace of research and development.

Purpose

The purpose of this project was to determine the effectiveness of the Sony AIBO robot as a platform for future testing of the artificial physics algorithm, and to create an artificial physics Python module that could be used to control the AIBO robots.

Review of Literature

Artificial physics (AP) is a system of robot control that was designed very recently by William Spears and Diana Gordon (1999), researchers at Naval Research Laboratories. Essentially, the system is meant to simulate physical laws of nature, such as the forces of gravity and magnetic attraction. AP can be used to control large groups of robots by simulating physical forces as if each robot were a single molecule.

One possible behavior for a group of robots would be to arrange themselves into a grid without outside assistance. This behavior could be useful in a number of different ways. For example, a group of satellites could autonomously arrange itself into an antenna array. At first glance, such a behavior would appear to require the use of an external camera capable of tracking all of the robots and directing their movements. However, it can, in fact, be accomplished by a robot equipped with only a rangefinder and guided by a simulated gravitational force. The robots are programmed to follow a single rule – if two robots are closer than a distance r, they repel; if they are further, they attract. If a group of seven robots are set into this environment, they would eventually form a hexagonal grid (with one in the center) and would settle into a formation that allows every robot to maintain a distance r from its neighbors (Spears & Gordon, 1999). This elegant solution is the basis of artificial physics.

Forming hexagonal grids is a very basic application of AP. The system is capable of guiding much more complex behaviors with equal ease. For example, imagine a group of robots tasked to patrol an area and keep any intruders from entering. Using AP, the robots could be programmed to behave like the molecules in gas, spreading out evenly across the area. The guard robots would be “attracted” to any intruder that entered the area and would chase it out. Since the guards themselves repel each other, however, only a few would confront each intruder, so that the other side of the area would never be left exposed. If one of the robots were destroyed, the others would simply diffuse to fill in the empty space (Spears & Gordon, 1999). Once again, AP is able to quickly solve the problem.

Due to the fact that AP was designed recently, it has not yet undergone thorough testing on physical robots. Thus far, most of the testing has been conducted in simulation. Testing on physical robots is the logical next step in this research. Since AP treats each robot as a particle, the actual shape and structure of the robot is unimportant. For the purposes of this research, the Sony AIBO robot served as a useful platform. The AIBO, modeled on a small dog, is about 25 cm tall and 30 cm long, and weighs about 1.5 kg (Röfer & Jüngel, 2003). It is able to move in all directions using various four-legged walking styles. The AIBO was marketed as a toy robot to be used for entertainment, but new software such as Tekkotsu (Tira-Thompson, Halelamien, Wales & Touretzky, 2004) allows users to circumvent the original programming and directly control every aspect of the AIBO. This software allows users to gather the raw data from all of the AIBOs sensors, which include a camera, microphones, and three infrared rangefinders. One can also control AIBO movement in complete detail, with individual control over each joint. Also, the ability for the AIBO to communicate wirelessly with a single host computer makes it ideal for use in AP.

That said, the AIBO does have certain limitations. Since the design is based on a biological dog, the AIBO is only able to move its head 180°, meaning it can only gather data about half of its environment. In addition, the rangefinder data is not exceptionally accurate, as the robot was not designed for serious research. Fortunately, certain methods can be used to circumvent these problems. One method is to use a camera to track all of the robots and provide their localization data. While possible, this method adds an unnecessary level of complication, as it requires the use of computer vision and tracking. It is also possible, however, to rely on the odometry data from the AIBO. If the initial position of the AIBO is known, the host computer can keep track of the position of the robot by extrapolating based on known movements (Röfer & Jüngel, 2003). This method of localization was used in this project.

As mentioned above, Tekkotsu allows users to control the AIBO in great detail. However, it is often more useful to maintain high-level control. That is, instead of having to manipulate each joint of the robot legs, it is more effective to pre-program a walking routine and be able to simply direct the robot to move forward or turn. It is this high-level control that Pyro (Python Robotics) is able to provide. Pyro is a robotic interface system, written in the programming language Python, an interpreted language that can be used on any platform. Python is also a relatively simple and user-friendly programming language. By interfacing the Python interpreter with the Tekkotsu library, Pyro allows users to control the AIBO much more easily and interactively. Because Pyro also provides access to a simple robot simulator environment, users can test programs virtually before using them on the actual AIBO (Blank, Meeden & Kumar, 2003). For these reasons, Pyro was used to control the robots during this project.

Using Pyro, however, introduces one final step into the project. In order to use Pyro, one must first have a robotic “brain” written in Python. At the time of this project, the only complete implementation of AP was written by researchers at Naval Research Laboratories Artificial Intelligence Center. This implementation consisted of a library of basic functions written in the programming language C. In order to use this library to control the AIBO robots, it would be necessary to create a Python wrapper for the C code.

Methodology

Testing Design

The first goal of this project was to create a robot “brain” in Python that could be used in the Pyro simulator. Since the program was a direct port of a preexisting C library, no testing was necessary during this step.

The next goal of the project was to determine whether the AIBO could be effective as a platform for artificial physics. Since the AIBO kept track of its location using its own odometry data, this data must be accurate for the algorithm to function correctly. That is, if the robot is instructed to walk forward five meters, it should physically move about five meters. Therefore, it was necessary to test the accuracy of the odometry data from the AIBO in two ways: first, the accuracy of the straight line travel distance, and second, the accuracy of turning degree.

Materials

The primary materials necessary for this project were certain pieces of software, including SWIG, Tekkotsu, and Pyro. The other crucial items were a group of seven Sony AIBO robots, model ERS-7. The process for compiling and running the Python brain was developed on the Linux operating system and was tested on Mac OS X and Microsoft Windows XP.

Procedures

The first step in this project was to create a working Python program that mirrored the preexisting artificial physics C library. This process was facilitated by the use of SWIG, an open-source tool that helps automatically generate portions of code used to wrap code. Once this wrapper was created, a compiler was used to build a dynamic library that linked to the wrapper code and all necessary object files from the C library. This process was done using the GCC compiler.

The end product of this process was a file that could be imported into Pyro as a robot “brain.” At this point, it was possible to execute the program within the Pyro simulator. Only basic observation of the behavior of the robotic agents was necessary to confirm that the Python simulation was proceeding in the same manner as the C simulation.

The next step was to set up a network that allowed the Pyro interpreter to communicate with the Sony AIBO robots. The process for configuring the network is detailed within the Pyro software tutorial.

In order to measure the accuracy of the odometry data from the Sony AIBO robots, two separate tests were conducted, one for turning and one for forward motion. In each test, two different robotic gaits were used, referred to henceforth as “walk” and “crawl.” These gaits are preprogrammed into the AIBO robots for use during different activities.

The setup for both tests required that one AIBO be placed in the center of a large room with a smooth floor, with no obstacles in its path. The wireless connection between the AIBO and a host computer, which was running the Pyro simulator, was established. In the first test, the AIBO was instructed to move forward 10 meters. The dependent variable was the actual distance that the AIBO traveled. This test was repeated ten times using each type of gait. In the second test, the AIBO was instructed to make a turn of 360 degrees. The dependent variable was the actual number of degrees that the robot turned. Again, the test was repeated ten times using each gait.

Results

The following table shows the results from the first test of odometry data, which measured the accuracy of the AIBO when moving in a straight line.
[image: image1.emf]Accuracy of Turning Odometry Data

Error (%) Error (%)

360 220 -38.89 320 -11.11

360 340 -5.56 250 -30.56

360 190 -47.22 230 -36.11

360 390 8.33 170 -52.78

360 360 0 400 11.11

360 330 -8.33 260 -27.78

360 340 -5.56 390 8.33

360 380 5.56 220 -38.89

360 230 -36.11 340 -5.56

360 360 0 190 -47.22

Expected

(degrees)

Measured

Walking (°)

Measured

Crawling (°)

Table 1
The next table shows the results from the test conducted to find the accuracy of the AIBO odometry data while turning.

[image: image2.emf]Accuracy of Straight Line Odometry Data

10 9.44 -5.6 9.86 -1.4

10 4.7 -53 10.92 9.2

10 6.04-39.6 5.68-43.2

10 10.46 4.6 9.14 -8.6

10 5.24-47.6 7.46-25.4

10 10.7 7 3.6 -64

10 9.42 -5.8 10.68 6.8

10 4.8 -52 10.42 4.2

10 6.5 -35 7.22-27.8

10 4.24-57.6 9.9 -1

Expected

(meters)

Measured

Walking (m)

Error

(%)

Measured

Crawling (m)

Error

(%)

Table 2

Discussion

The raw data from the experiments used to test the odometry of the AIBO robots is somewhat misleading. Consider the results of the straight line walking test. In the second, third, fifth, and tenth trials, the measured values missed the expected values by a wide margin, with greater than 35% error. In the other trials, the error was less than 7.0%. At first glance, this appears to suggest that the AIBO was moving in a random fashion. In reality, the errors in odometry data were due to slippage. Having four legs, it is very easy for the robot to place too much weight on one leg, causing it to slip. During each of the trials in which the odometry data shows an error of greater than 10%, the robot slipped during the course of motion. When this slippage occurred, the Pyro simulator was unable to compensate, and the odometry data became unreliable. As is visible from the data, the robot slipped 60% of the time while walking and 40% of the time while crawling. During the trials in which the robot did not slip, the odometry data had an error of less than 8.6%, a margin that would be small enough for simulator recovery. The results were similar for trials conducted while the robot was turning, with the robot slipping 30% of the time while walking and 60% of the time while crawling. Efforts were taken to reduce the amount of slippage, including placing rubber mats on the floor of the testing area, but these efforts had almost no effect.

Conclusion

The purpose of this project was to create an artificial physics Python module that could be used to control the Sony AIBO robots, as well as to determine the effectiveness of the AIBO as a platform for future testing of the artificial physics algorithm.

The first purpose of this project was successful and useful. Since Python is an interpreted language, the Python module that was created can be used on any operating system or platform. The Pyro simulator is also a cross-platform application, meaning that the artificial physics simulation is now available for a much wider group of researchers.

The second portion of the project showed that the AIBO is in fact not a viable platform for testing the AP algorithm. The issue of slippage caused too many errors in the odometry data for the AIBO to be effective for further research.

One possible course of future research might involve using methods other than odometry for localization with the AIBO robots. For example, if an external camera were used to track the location each robot, the slippage problem would be negated. Another possibility is the use of Monte Carlo particle filter analysis. However, this method may be rather inaccurate because of the limited accuracy of the sensors on the AIBO. While the robot is equipped with two infrared rangefinders and a camera, preliminary testing of these sensors suggests that they may be unsuitable for localization.

Another possible avenue of future research involves using an entirely different type of robot. Since the artificial physics library has been ported to Pyro, it is now theoretically possible to control any of the robot models compatible with the Pyro simulator, including the Pioneer and Hemission robots. These robots are generally more widely used for research, and have established methods of localization.

Acknowledgments

I would like to thank the Adaptive Systems team at Naval Research Laboratories Artificial Intelligence Center, especially Mitchell Potter and R. Paul Wiegand, for their guidance and support throughout this project.
Literature Cited

Blank, D., Meeden, L., & Kumar, D. (2003). Python robotics: An environment for exploring

robotics beyond LEGOs. SIGSCE ’03, 35, 317-3121.
Ikemoto, Y., Hasegawa, Y., Fukuda, T., & Matsuda, K. (2005). Gradual spatial pattern formation
of homogeneous robot group. Information Sciences, 171, 431-445.
Lee, M. (2003). Evolution of behaviors in autonomous robot using artificial neural network and
genetic algorithm. Information Sciences, 155, 43-60.
Oliveira, E., Fischer, K., & Stepankova, O. (1999). Multi-agent systems: Which research for
which applications. Robotics and Autonomous Systems, 27, 91-106.
Röfer, T., & Jüngel, M. (2003). Fast and robust edge-based localization in the Sony four-legged
robot league. In Polani, D., Browning, B., Bonarini, A., & Yoshida, K. (Eds.), RoboCup
2003: Robot soccer world cup VII (pp. 262-273). Berlin: Springer.
Spears, W. M., & Gordon, D. F. (1999). Using artificial physics to control agents. 1999
International Conference on Information Intelligence and Systems, 1999, 281-288.

Tira-Thompson, E. J., Halelamien, N. S., Wales, J. J., & Touretzky, D. S. (2004). Tekkotsu:
Cognitive robotics on the Sony AIBO. Proceedings of the Sixth International Conference
on Cognitive Modeling, 6, 390-391.
� EMBED opendocument.CalcDocument.1 ���

� EMBED opendocument.CalcDocument.1 ���

_102176936.unknown

_102141488.unknown

