
Learning Traffic Light Simulation

Lynn Jepsen
Computer Systems Lab, 2006-2007

June 12, 2007

Abstract

This project is meant to simulate a busy traffic light. The program
recognize patterns in the intersection and then uses that information
to make the light as efficient as possible. These patterns could be
related to the time of day and/or the day of the week. At first I
would purposely input recognizable patterns and see if the program
would catch it, but eventually the plan would be to possibly use this
program at a real intersection. There are many variables that the
program takes into account including traffic density and number of
lanes.
Keywords: traffic simulation, efficiency, cars, red light: stop, green
light: go, pedal to the metal, voom voom, honk

1 Introduction

I want to develop an algorithm that will increase efficiency by changing the
lights at the right time. I developed an algorithm that would decide when to
make each direction red, yellow, or green based on information it gathers from
the intersection. In order to see if this algorithm is working, and gather lots
of data very quickly, I built a simulation of a traffic intersection to test the
algorithm on. The simulation follows basic rules of the road. Each car takes
up so much space on the lane, travels so fast, and has a max acceleration.
It is a realistic simulation because it obeys physical laws as well as human
laws. People only travel so fast and do not peel out of intersections. The
data gathered from the intersection is then fed into the light algorithm, which
changes the light in each direction.

1



2 Background

Traffic lights can cause problems with traffic flow if they are not timed well.
If the light has no information about the intersection it is controlling, then
you can sit at a red light for what seems hours. Even worse is when the light
is much too short and you have to wait through lots of cycles. We have all
experienced this. There has been a lot of research done to try and automate
cars, using GPS, so that they all pass through the intersection harmlessly.
However, this technology can be expensive, and it would take a long time to
install it into all cars in order for the project to work. I think a much cheaper
solution would be to fix existing traffic lights with more efficient algorithms.
In order to see if this algorithm is working, and gather lots of data very
quickly, I designed a simulation of a traffic intersection to test the algorithm
on. This way I can test pictorially, the aerial view of the intersection, but also
graph certain parameters such as queue length and wait time to see general
trends.

3 Developments

3.1 Hierarchy

In order to set up my program with appropriate an hierarchy to increase
efficiency and make it easier to understand, I wrote four basic classes. The top
class was the TrafficLight. It had my two most important functions: running
the simulation, and the light algorithm. It also stored all four Directions.
Direction was my next class. It stores all the lanes in a certain direction
(north, south, east. or west) and can change the lanes of cars if the cars so
desire. Each Direction stores a certain number of Lanes (depending on how
big the user wants the intersection to be). Lanes have the job of telling cars
to either stop or go through the intersection depending on whether the light
is red, yellow, or green. The color of the light is passed from TrafficLight to
Direction to each Lane individually. The Lanes also stores all the Cars, and
makes sure they don’t overlap. Cars store their speed and spot on the lane.
They know how fast they want to go, how fast they like to accelerate, and
other mechanical properties. Depending on the information the Lane gives
it, the Car will either slow down or speed up each step of the simulation.
The Car re-saves its current speed and spot on the Lane and then sends its

2



information back up to the Lanes class. All information goes back up to the
TrafficLight, which runs the simulation and light algorithm

3.2 Simulation

The first section that I developed was a basic simulation of a four lane in-
tersection. After programming so cars that move with realistic speeds and
acceleration, stop behind each other, accelerate at reasonable speeds and
obey other rules of the road, I then set each intersection at a set traffic
density that can be changed at the beginning of each experiment. Traffic
density is the number of cars then drive onto the road in a minute. The
traffic densities are slightly random in that the average number of cars is
close to the traffic density. For example, if the traffic density was 60, that
doesn’t necessarily mean that a car drives onto the road every second, just
something close to that. This is a better representation of the real world.
I later added multiple lanes, so I could test my algorithm on intersections
made up of complex traffic densities and multiple lanes. The simulation is
an easy way to test a light algorithm. If you look at the intersection and
there are a lot of cars sitting somewhere and not moving, then perhaps the
light algorithm could be doing a better job. It is not an exact science, but
it certainly helped in the beginning, and it means more to people then any
other graph. We all see intersections every day, so we know whats good and
whats bad.

3



3.3 Light Algorithm

The next thing I worked on was the most important part, the light algo-
rithm. The light algorithm is what decides when to change the lights from
red to green in all four directions. In order to do this there are two variable
that must be found. These are cycle length and ratio. Cycle length is how
long it takes the intersection to go through an entire cycle with both sides
having their chance to be green. Ratio is the ratio of green light time in the
north/south direction compared to the east/west direction.

I wanted to find the correct variables for the light cycle at each instant on
an intersection that would maximize efficiency. I defined efficiency with three
other variables. They are queue length, wait time, and green light usage.[2]
So if we consider cycle length and ratio to be our independent variables and
our efficiency variables are our dependent variables, the experiment is to
change th cycle length and ratio in order to optimize efficiency (all three

4



variables). However, each instant on the intersection has one other main
variable that I cannot effect with my light algorithm. This is the traffic
density. The light algorithm looks at previous information that has been
stored from the simulation. It only looks at the past ten cycles because that
is all the information it needs, and older cycles could skew the data. It then
finds matches with the current traffic density (found by the Direction) and
past cycles. Once it has those cycles in mind, it finds which cycles had the
best queue length, wait time, and green light usage. This means it can find
up to three separate cycles if the best of each variable is spread out. It then
averages all three to find the best cycle for the intersection, at least at the
moment. It then does exactly the same thing for the ratio component. This
is the main function of the light algorithm, using previous information to
make educated guesses about the current situation.

However, it has to somehow decide on cycles and ratios in the beginning
without information. At first, the two functions find cycle length and ratio
through other means. Cycle length simply took the max wait time in each
direction and added them together plus ten seconds to account for red and
yellow light time. I figured this would give enough time for lots of cars to
get through the intersection. Ratio was decided by taking the queue length
in each direction and dividing. These more basic functions are also used
randomly through out the program to make sure that it doesn’t get ”stuck
in a rut”. If you end up using the same cycle over and over again, but
the traffic pattern change, then you have nothing to look back on to change
because it only looks back ten cycles. So about one in ten times the light
algorithm uses these functions to decide on cycle and ratio instead of looking
at previous information

The light algorithm will continue to compromise and eventually begin
to use similar cycle lengths and ratios. It approaches an optimization after
enough time. Considering that an intersection receives tons of data every
day, I feel like an algorithm that needs lots of information is appropriate for
the situation.

3.4 Graphs

I added another visual component to my program once I had finished my
light algorithm. It allows you to graph all three efficiency variables. This
way you can see if the algorithm is really optimizing the intersection. I made
is so that it graphed a north/south line and an east/west line. The closer

5



the two lines are to each other, the better the optimization. This is a more
exact way of measuring efficiency than just looking at the simulation. Note
that the intersection can only be so efficient. If there are just too many cars
for the number of lanes, then the algorithm will not work as well as it would
in a lighter traffic density. This is not an exact science. There are too many
variables in effect here, and they are often very random due to the nature of
the road. You cant possibly minimize wait time to the point where no one
waits. Traffic flow is just too erratic to predict well.

3.5 Multiple Lanes

I updated my simulation to be able to include multiple lanes in any direction.
While this does tend to lighten the traffic density, it has little other effect
on the light algorithm. I did have to increase the yellow light time when
there are too many lanes, because other wise too many cars run red lights.
I have yet to make it so that cars can change lanes, but there is room in the
hierarchy for it.

6



4 Results and Discussion

After running many simulations on heavy traffic flow, I have discovered that
there are two possible ways to efficiently run a light. The first way is to have
a cycle length that is just long enough to let all the cars through in a green
light before switching. This cycle length is very hard to guess because of
the randomness of traffic flow. The second way to run a light would be to
have an incredibly short cycle length that only lets one or two cars through
an intersection at a time. This way both directions are in effect moving at
the same time instead of having to wait at a light for 20 seconds. Both
methods tend to have about equal queue length, but long traffic light cycles
have longer wait time and short traffic light cycles have worse green light
usage. The wait time is shorter in the short traffic light cycles because you
are constantly moving, even though you are stop and go. The wait time
includes the entire time behind a light, so it is not just the wait time for one
cycle. The reason why longer traffic light cycles have better green light usage
is because they are designed to have exactly the right amount of time to let
in all the cars in a direction. I believe that the longer traffic light cycles are
a lot harder to make work right. Traffic densities tend to be too random to
allow for a perfect calculation of how long each cycle should be. I also believe

7



that short traffic light cycles are probably, on the whole, less efficient because
of the proportionately more yellow light time in each cycle. This is a factor I
did not take into account in my program, but would have in hind sight. My
conclusion is to have short traffic light cycles on intersection where the light
algorithm is not very well equipped (doesn’t have a lot of sensors) or if the
intersection tends to be very random. On the other hand, if the intersection
has lots of information, then longer traffic light cycles would work better to
create a more efficient intersection.

8


