
Traffic Light SimulationTraffic Light Simulation
Lynn JepsenLynn Jepsen

TJHSST Computer Systems Lab 2005 - 2006TJHSST Computer Systems Lab 2005 - 2006
AbstractAbstract

This project is meant to simulate a busy traffic light. The program 
recognize patterns in the intersection and then uses that 
information to make the light as efficient as possible. These 
patterns could be related to the time of day and/or the day of the 
week. At first I would purposely input recognizable patterns and 
see if the program would catch it, but eventually the plan would 
be to possibly use this program at a real intersection. There are 
many variables that the program takes into account including 
traffic density, number of lanes, etc.

BackgroundBackground
Traffic lights have always caused problems with traffic 
flow. If the light has no information about the 
intersection it is controlling, then you can sit at a red 
light for what seems hours. Even worse is when the 
light is much to short and you have to wait through lots 
of cycles. We have all experienced this. There has 
been a lot of research done to try and automate cars, 
using GPS, so that they all pass through the 
intersection harmlessly. However, this technology can 
be expensive, and it would take a long time to install it 
into all cars in order for the project to work. I think a 
much cheaper and temporary solution would be to fix 
the traffic lights our society already has with brand 
new algorithms that would make the light efficient. In 
order to see if this algorithm is working, and gather 
lots of data very quickly, I designed a simulation of a 
traffic intersection to test the algorithm on. This way I 
can test pictorially, the aerial view of the intersection, 
but also graph the efficiency variables to see general 
trends.

ResultsResults
This program looks like a realistic model of a traffic light. The This program looks like a realistic model of a traffic light. The 
cars speed up and slow down realistically, obey lights, and don't cars speed up and slow down realistically, obey lights, and don't 
run into each other. The light algorithm decreases the number run into each other. The light algorithm decreases the number 
of back ups in the intersection. The light algorithm is only so of back ups in the intersection. The light algorithm is only so 
useful. Once the traffic densities get too high for the current useful. Once the traffic densities get too high for the current 
number of lanes, then then no amount of changing cycle length number of lanes, then then no amount of changing cycle length 
or ratio will decrease queue length or wait time. However, if the or ratio will decrease queue length or wait time. However, if the 
intersection has a reasonable relationship between traffic intersection has a reasonable relationship between traffic 
density and number of lanes, then the light algorithm optimizes density and number of lanes, then the light algorithm optimizes 
the efficiency variables, and increases traffic flow!the efficiency variables, and increases traffic flow!

Simulation
The first section that I developed was a basic simulation of a 4 
lane intersection. I programed in cars that move with realistic 
speeds and acceleration This is the visual component that 
shows the intersection. The cars stop behind each other, 
accelerate at reasonable speeds and obey other “rules of the 
road”. I set each intersection at a set traffic density that can be 
changed at the beginning of each experiment. Traffic density is 
the number of cars then drive onto the road in a minute. The 
traffic densities are still slightly random in that the average 
number of cars is close to the traffic density. I later added 
multiple lanes, so I could test my algorithm on intersections 
made up of complex traffic densities and multiple lanes. 

Light Algorithm
The light algorithm is what decides when to change 
the lights from red to green in all four directions. In 
order to do this there are two variable that must be 
found. These are cycle length and ratio. Cycle length 
is how long it takes the intersection to go through an 
entire cycle with both sides having their chance to be 
green. Ratio is the ratio of green light time in the 
north/south direction compared to the east/west 
direction. I wanted to find the correct variables for 
the light cycle at each instant on an intersection that 
would maximize efficiency. I defined efficiency with 
three other variables. They are queue length, wait 
time, and green light usage. Each instant on the 
intersection has one main variable that I cannot 
effect with my light algorithm. This is the traffic 
density. So if we consider traffic density, cycle length, 
and ratio to be our independent variables and our 
efficiency variables are our dependent variables. The 
experiment is to change th cycle length and ratio 
(because you can't change traffic density) in order to 
optimize efficiency (all three variables). The trick 
comes is getting all three efficiency variables 
optimized at once. The light algorithm uses previous 
traffic densities, cycle lengths, and ratio to try and 
find which combination of best optimized all three 
efficiency variables. The algorithm must 
compromises to make sure that all three efficiency 
variables are good. The intersection continues to 
compromise and eventually begins to use similar 
cycle lengths and ratios. It approaches an 
optimization after enough time. Considering that an 
intersection receives tons of data every day, I feel 
like an algorithm that needs lots of information is 
appropriate for the situation.
I added another visual component to my program 
once I had finished my first draft of the light 
algorithm. It allows you to graph all three efficiency 
variables. This way you can see if the algorithm is 
really optimizing the intersection. I made is so that it 
graphed a north/south line and an east/west line. The 
closer the two lines are to each other, the better the 
optimization.


