
Development of a 3D Graphics Engine
Kevin Kassing – Computer Systems Lab 2006-07 – Period 5

Abstract
As computer technology moves into the new era of commonplace hardware-

accelerated rendering of 3D graphics, it is becoming important to have toolkits for 
rendering 3D graphics in a cross-platform, library-independent manner. Most current 3D 
engines are specialized or have a level of complexity daunting to the beginning 3D 
programmer. The goal of this project is to reduce the amount of low-level management 
the programmer must do in order to get a program up and running. Aside from camera 
and matrix management, common to all OpenGL applications, this project provides 
management for 3D meshes, which are currently distributed in often poorly documented 
formats. 

Procedures and Methods
The engine is designed with speed and memory 

efficiency as the primary goals. Modularity is 
achieved by abstracting the engine from the math, 
mesh, and material functions.

The engine consists of a basic engine framework, 
and accessory methods useful for 3D graphics, such 
as camera management. A highly optimized 
mathematics library provides data structures and 
methods for use with vectors, quaternions, matrices, 
and planes. 

The material methods are in a separate library, 
which has support for multitexturing, lighting 

Rendering and animating meshes in 3 formats

Optimized rendering using triangle strips

properties, and GPU shaders, which modify the fixed rendering pipeline of the graphics 
hardware. The library also includes image loading routines.

The mesh functions are also exported to a separate library. Support for loading from 
MD2, MD3, and MD5 formats is included. Vertex and skeletal animation can both be 
used, and methods to read and write data in the internal format are provided.

Mesh data is stored internally in the half-edge format. This allows for easier 
modification of the mesh topology and adjacency queries, which are useful in collision 
detection. Semantic data, such as triangle vertex specifications, is separated from 
vector data, so that the vector data may be placed in Vertex Buffer Objects for 
optimized transmission to the GPU.

Optimizations
Included in the mesh library are functions to 

optimize the rendering process by exploiting 
the connectivity of triangles. Strips of triangles 
which share a common edge are algorithmically 
generated, creating a reduced list of vertices to 
be sent to the graphics hardware. After the first 
triangle is defined with three vertices, the next 
triangle is assumed to share the last two 
vertices of the first triangle, and the next vertex 
is opposite of that edge. Normally, each triangle 
would need all three vertices sent to the 
graphics card. A decrease in data sent to the 
graphics card results in an increased framerate. 


