

Antigone Engine

Kevin Kassing – Period 5
2006-07

Introduction

● Antigone = “Counter Generation”
● Library of functions for simplifying 3D

application development
● Written in C for speed (compatible with C++,

can make bindings for other languages)
● Wrappers for commonly used OpenGL

functions
● Data structures for semantic objects

Implemented Features

● Efficient camera management
● Frontend management (GLUT, SDL)
● Input API
● Debugging tools
● Included libraries:

– liballoy: textures and materials

– libhemi: meshes and animations

– libmala: matrices, vectors, and quaternions

Internal Structure

● Included in the core:
– Debugging tools

– Camera management

– Basic program loop

– Input/Output API

– Particle Engine

– Multipass rendering facilities

● Most essential functions are in external libraries

Debugging Tools

● Assert – ASSERT(a==b, “A not equal to B!”);
● Logging – wrapper for fprintf
● Profiling – measure speed of predefined blocks

of code (print min, max, average ticks):

startSample(“Loop A”);
for (int i=0;i<100;i++)
{

x=x*sqrt(y);
}

endSample();

Particle Engine
● Uses lots of

“billboarded”
triangles (oriented
toward the camera)

● Simple gravity
effects and
customizable colors

● Cheap way to
emulate liquids and
gases – smoke,
fire, water, etc.

Multipass Rendering

● Render to texture
can be used to
dynamically
animate textures

● Common use is
to render
something on a
monitor or screen
within the
simulation

libmala

● Highly optimized math functions
● No dependencies
● Vector structs with 2, 3, or 4 components
● 3x3 and 4x4 matrices, square or flat
● Quaternions (w+xi+yj+zk)
● Basic support for common operations on

transform matrices and rotations
● Limited collision detection routines

liballoy

● Depends on libmala
● Handles lighting properties, textures,

multitexturing, and shaders
● Routines to read/write material definitions

embedded within another file
● Support for loading from PNG, BMP, JPG,

PCX, WAL, TGA
● Can optionally be compiled with other image

loading libraries (SDL_image)

libhemi

● Depends on liballoy and libmala
● Support for loading meshes from MD2, MD3,

MD5
● Support for vertex and skeletal animation
● Meshes internally represented in half-edge

format
– Each edge knows where it starts, the next edge,

opposite edge

– Allows for easy adjacency queries, mesh
modifications

Mesh Optimizations

● Topology is separate from vertex position
● Triangle connectivity is

exploited to create
optimal rendering orders

Neighboring
triangles share
vertices, which don't
need to be sent to the
graphics card

Triangle Strips

● In skeletal models,
speedup can reach 15%

● Possible to create strips
averaging 30 triangles in
length

● In complex models, can
render using < 50% of the
number of vertices as in
normal rendering

Design Considerations

● Speed, Speed, Speed!
– mesh rendering optimizations (triangle strips)

– data structures (balance with memory constraints)

● Backwards Compatibility
– once API reaches some point, updates may

deprecate but not remove interfaces

● Modularity
– should be able to easily add new systems (which

operate efficiently), for example, sound and network

Problems

● Feature creep, especially with formats
– Need to generalize data structures as much as

possible

● Compatibility
– Defining multiple frontends and input systems

– OpenGL extensions / Hardware capabilities

– Support for those who don't have library X

● Lack of documentation on formats

Conclusions

● The benefits of using C instead of C++ are
marginal at best

● Texture loading functions should be handled by
an existing library in most cases

● Topology should be separable from vertex
positions

● Extensive consideration should be given to the
future of a program which is built from libraries

● Triangle strips are well worth the amount of
time they take to generate

