
Modular Architecture for Computer Game
Design

Teddy McNeill
Thomas Jefferson High School for Science and Technology

Alexandria, Virginia

January 23, 2007

Abstract

Common current game architectures limit program flexibility and
modularity. With the advent of middleware and the increasing com-
plexity of games, this is no longer acceptable. In this project I have at-
tempted to design and implement (using C++ and OpenGL) a highly
modular, Data-centered architecture based on the ”System of Sys-
tems” approach. The final implementation was not required have any
significant complexity within each system (e.g. graphics, AI, etc.) but
rather had to demonstrate the successful interaction of independent
systems.

1 Introduction

Current game architectures are designed with Object-Oriented programming
in mind. This often involves giving the game entity objects the function-
ality to do all the drawing, calculation, etc. involved in their use. While
this method conforms to Object-Oriented programming practices, it has ma-
jor drawbacks. Specifically, this technique limits the recycling of code and
implementation of middleware (or the Component-Off-The-Shelf [COTS] ap-
proach). For example, if a sequel to a game were to be created that switched
from 2D to 3D graphics, it should not be necessary to completely remake the
game; however, that is what is often required.

1



This project will attempt to implement an architecture for games that
allows efficient reuse of code and accomodates the COTS approach. This
primarily will be based on the separation of data and calculations. The
suggested architecture will use a data-centered, System-of-Systems organiza-
tional structure.

The widespread use of this architecture would allow game developers to
make extensive use of middleware during the creation of almost any game.
It would also reduce the time and work required to produce games with
similar elements. While the direct application of this research is to games,
the architecture and COTS approach can be applied to nearly any form of
software development; the reusal of code and friendliness towards middleware
could expedite the development of all programs to some degree.

2 Background

Jeff Plummer, in his paper A Flexible and Expandable Architecture for Com-
puter Games, provided the inspiration for this research. Plummer attempted
to solve the problem of game developers having to rewrite large sections of
game code that are designed to create very similar outputs. The proposed
solution was the System-of-Systems approach.

The System-of-Systems approach is data-centered, meaning that all classes
are passed a pointer to a class containing all the data that represents the
game world and the entities within it. All classes exist to operate on this
data. This is as opposed to more common systems that would allow objects
(entities) to operate on their own data.

The System-of-Systems approach, as its name indicates, considers a game
no more than a group of interacting systems. Each of these systems (such
as AI, Graphics, Collision Detection, Game Logic) can be represented as a
class. Each of these classes would act upon the central data.

What this approach provides for is the total separation and independence
of the systems. That is, within a correctly designed architecture, the Physics
class need not know what it is acting on to operate properly. Thus, with the
correct interfacing of classes, a middleware physics system could be added
with little effort. The same could be done with nearly any system excepting
Game Logic.

2



3 Early Development

3.1 Requirements

The requirements for the implementation were fairly skeletal. It was nec-
essary to include several systems in order to examine their interaction and
interfacing and in order to provide proof of concept. However, it was not
necessary that any of these systems exhibit any complexity within them-
selves. That is, the graphics system could only display cubes, the sound
system could only display beeps, etc. and the architecture could still be
contructively examined.

The only other requirement was that the creation actually constitute a
3D game (rather than some other non-game type of program) in order to
ensure relevance to the problem being addressed.

3.2 History

Due to the author’s lack of experience with the tools at hand (C++ and
OpenGL), the first section of development was spent on prototyping the
necessary functionality for a game. While the systems involved did not need
to be complex, this required research and experimentation.

The second section of development began with organizing and cleaning
up the code that had already been written and designing the specific new
architecture. This design process experienced early difficuly due to the limi-
tations of the tools being used. Specifically, the use of the GL Utility Toolkit
(GLUT) required that the input, output, and initiation of the program occur
in the same class. After this was taken into account, the design was com-
pleted. It was decided that the final architecture would make use of four
classes: a main I/O class, a Data class, a Physics/Collision Detection class,
and a Game Logic class.

After this design was completed, variables representing game entities were
removed from the prototype code and added into the new Data class. It was
ensured that functionality remain the same during this process.

4 Results and Discussion

The purpose of this project was to implement a modular architecture and
examine its development and benefits. The completion of such an architec-

3



ture could provide a base for future development of complex games requiring
middleware or reusal of code.

As the research has not yet been completed, and considering the state of
the current results, any conclusions or reports of results would be premature.

4


