
Modular Architecture for Computer Game
Design

Teddy McNeill
Thomas Jefferson High School for Science and Technology

Alexandria, Virginia

June 11, 2007

Abstract

Common current game architectures limit program flexibility and
modularity. With the advent of middleware and the increasing com-
plexity of games, this is a significant hindrance to development. In
this project I have attempted to design and implement (using C++
and OpenGL) a highly modular, data-centered architecture based on
the ”System of Systems” approach. The final implementation was
not required to have any significant complexity within each system
(e.g. graphics, AI, etc.) but rather had to demonstrate the successful
interaction of independent systems.

1 Introduction

Current game architectures are designed with Object-Oriented programming
in mind. This often involves giving the game entity objects the function-
ality to do all the drawing, calculation, etc. involved in their use. While
this method conforms to Object-Oriented programming practices, it has ma-
jor drawbacks. Specifically, this technique limits the recycling of code and
implementation of middleware (or the Component-Off-The-Shelf [COTS] ap-
proach). For example, if a sequel to a game were to be created that switched
from 2D to 3D graphics, it should not be necessary to completely remake the
game; however, that is what is often required.

1



This project attempted to implement an architecture for games that al-
lows efficient reuse of code and accommodates the COTS approach. This
primarily was based on the separation of data and calculations. The archi-
tecture used a data-centered, System-of-Systems organizational structure.

The widespread use of this architecture would allow game developers to
make extensive use of middleware during the creation of almost any game.
It would also reduce the time and work required to produce games with
similar elements. While the direct application of this research is to games,
the architecture and COTS approach can be applied to nearly any form of
software development; the reuse of code and friendliness towards middleware
could expedite the development of all programs to some degree.

2 Background

Jeff Plummer, in his paper A Flexible and Expandable Architecture for Com-
puter Games, provided the inspiration for this research. Plummer attempted
to solve the problem of game developers having to rewrite large sections of
game code that are designed to create very similar outputs. The proposed
solution was the System-of-Systems approach.

The System-of-Systems approach is data-centered, meaning that all classes
are passed a pointer to a class containing all the data that represents the
game world and the entities within it. All classes exist to operate on this
data. This is as opposed to more common systems that would allow objects
(entities) to operate on their own data.

The System-of-Systems approach, as its name indicates, considers a game
no more than a group of interacting systems. Each of these systems (such
as AI, Graphics, Collision Detection, Game Logic) can be represented as a
class. Each of these classes would act upon the central data.

What this approach provides for is the total separation and independence
of the systems. That is, within a correctly designed architecture, the Physics
class need not know what it is acting on to operate properly. Thus, with the
correct interfacing of classes, a middleware physics system could be added
with little effort. The same could be done with nearly any system excepting
Game Logic.

2



Game Data

Artificial
Intelligence

Input/Output

Physics/
Collision
Detection

Game Logic

Figure 1: The System-of-Systems architecture as implemented in this project.

3 Development

3.1 Requirements

The requirements for the project implementation were fairly skeletal. It was
necessary to include several systems in order to examine their interaction
and interfacing and in order to provide proof of concept. However, it was
not necessary that any of these systems exhibit any complexity within them-
selves. For instance, the graphics system could only display cubes and the
architecture could still be usefully examined.

The only other requirement was that the creation actually constitute a
3D game (rather than some other non-game type of program) in order to
ensure relevance to the problem being addressed.

3.2 Development Plan

The benefits of the System-of-Systems architecture are focused in the devel-
opment process rather than in the final product of the code. Therefore, in
order to evaluate the effectiveness of the architecture, it was necessary to

3



add a new system into a fully-functional game. This would be analogous
to adding in a piece of middleware. Therefore, the implementation of the
project came in three major stages. First, I prototyped the technologies
necessary for the game. Second, I restructured this code into a fully func-
tional System-of-Systems game. Third, I added a brand new system into the
existing game and analyzed the ease of this addition.

3.3 History

3.3.1 Prototyping

Due to the author’s lack of experience with the tools at hand (C++ and
OpenGL), the first period of development was spent on prototyping the nec-
essary functionality for a game. These mainly related to specific OpenGL
functions and basic programming for a first-person 3D game environment.
By the end of this first stage of development, a basic 3D first-person target-
shooting game was implemented.

3.3.2 Structuring

The second period of development began with organizing and cleaning up
the code that had already been written and designing the specifics of the
new architecture. This design process experienced early difficulty due to the
limitations of the tools being used. Specifically, the use of the GL Utility
Toolkit (GLUT) required that the input, output, and initiation of the pro-
gram occur in the same class. After this was taken into account, the design
was completed. It was decided that the final architecture would make use of
four classes: a main Input/Output class, a Data class, a Physics/Collision
Detection class, and a Game Logic class. The I/O class contained the GLUT
functions, the Data class contained the data that described the game world,
the Physics class governed the movement of game entities, and the Game
Logic class dealt with game-specific rules such as scoring the player’s perfor-
mance.

3.3.3 AI Addition

After the new design was implemented, it was necessary to add a new sys-
tem in order to examine the architecture’s usefulness. I chose to add an
Artificial Intelligence system, along with new Enemy data. This effectively

4



Figure 2: A screenshot from the completed game. Note the Enemy entity
and its shots. This is being governed by the new Artificial Intelligence class.

changed the game from a target-shooting game to a more standard first-
person shooter. This stage of development required that I alter the I/O class
in order to display the new Enemy entity. I also had to add new Data, change
the Game Logic in order to accommodate the new scoring system, and add
Physics functionality for the new interaction with the Enemy entity and the
projectiles it would fire at the player.

4 Results and Discussion

4.1 Overview

The purpose of this project was to implement a modular architecture and
examine its development and benefits. The completion of such an architec-

5



ture could provide a base for future development of complex games requiring
middleware or reuse of code. The implementation required that several inde-
pendent systems operate on a piece of central data, but each of these systems
could be very primitive. While the final program of this project was not en-
tirely successful at demonstrating a working System-of-Systems architecture,
the project was successful at further clarifying what is necessary to make such
an architecture work effectively.

4.2 Results

The key to understanding the effectiveness of this program’s architecture lies
in the addition of the Artificial Intelligence system that came at the end of
the development process. In a proper System-of-Systems architecture, one
would be able to write the new system and integrate it into the rest of the
program with minimal modifications made to the other systems. This was,
unfortunately, not the case with the AI addition.

The problem with my implementation was that there was not enough
abstraction. That is, each class would operate on individual variables or lists
of variables (such as the player’s position, or the projectiles that the player
generated). Therefore, when the Enemy was added, the I/O class required
extra code to display it, the Physics class required new functions governing
its collision detection, et cetera. This limitation meant that the addition of
a new system was not seamless or easy for the developer, but rather required
nearly as much modifications as another architecture would need.

4.3 Analysis

The solution to the problems that this project discovered is to abstract all
operations upon the game data. For example, rather than display individu-
ally the shots, the world, the targets, et cetera, the I/O class ought to run
through a list of ”displayable” items and draw them in a more automatic
fashion. With such a system, the inclusion of a new entity (such as the en-
emy) could be facilitated simply by adding this new entity to a list in the
Data class, with minimal or no modification necessary to the I/O class.

One effect of this solution is that the newly included classes would require
greater standardization. If the I/O class is to draw a new entity or the
Physics class is to know how to move it in the game world, the new entity
must keep information that pertains to these functions, and it must keep this

6



information in a form that the existing classes ”know” how to access. This
is achieved by storing such variables in a standardized manner that is known
to the developers of all systems and data.

It should be noted that despite the troubles with interfacing new data
with the existing classes, the data-centered nature of the architecture was of
great help during development. All of the systems, including the Artificial
Intelligence system, were implemented more conveniently and efficiently due
to this structure. A wide range of variables was easily accessible to all sys-
tems. Also, the basic separation of systems was both simple and effective;
different systems were independently designed and implemented, and this
allowed easier implementation of all.

4.4 Conclusion

The System-of-Systems architecture still has great potential. Though this
project was not fully successful in implementing a working instance of the
architecture, the benefits that were attained through even the more lim-
ited implementation show that this structure would accomplish its goals of
supplying modularity and flexibility. This researcher suggests a follow-up
project attempting to fix the faults and troubles encountered in this imple-
mentation; such research, especially if followed by projects that demonstrate
major game modifications, could conclusively demonstrate the superiority of
the System-of-Systems architecture.

References

[1] Plummer, Jeff, ”A Flexible and Expandible Architecture for Computer
Games”, December 2004.
http://www.gamasutra.com/education/theses/20051018/plummer thesis.pdf
(September 19, 2006)

[2] Amato, John, ”Collision Detection”, GameDev.net September 15, 1999.
http://www.gamedev.net/reference/articles/article735.asp (January 16,
2007)

[3] Kershner, Jeff, ”Object-Oriented Scene Management”, GameDev.net
May 2, 2002.

7



http://www.gamedev.net/reference/articles/article1812.asp (January
16, 2007)

[4] Nicollet, Victor, ”Item Management Systems”, GameDev.net October
21, 2004.
http://www.gamedev.net/reference/articles/article2163.asp (January
16, 2007)

5 Appendix

5.1 Main Loop Code

This is the point within the main loop where all the calculations of the game
world take place. Note the simplicity of this step due to the System-of-
Systems architecture.

physics.tick(&d);

ai.tick(&d);

game.tick(&d);

5.2 Physics System Code

This code demonstrates the manner in which the data-centered structure was
used.

for(int i =0;i<150;i++)

{

if(d->shots[i].exists && distance(d->shots[i].pos,d->enemy.pos)<=1.0)

{

d->shots[i].exists=false;

d->currentcollisions++;

}

}

5.3 Graphical Output Code

This code demonstrates the lack of abstraction that ultimately crippled the
System-of-Systems benefits. Note how specific drawing routines are used for
the shots of both the player and the Enemy entity.

8



glBindTexture(GL_TEXTURE_2D, textures[2].texID);

for(int i =0;i<150;i++)

{

if(d.shots[i].exists)

{

Vector3 pos = d.shots[i].pos;

drawCube(0.2, pos);

}

}

for(int i =0;i<150;i++)

{

if(d.enemyshots[i].exists)

{

Vector3 pos = d.enemyshots[i].pos;

drawCube(0.2, pos);

}

}

9


