Project Description



Student: Teddy McNeill

Period 3 Computer Systems

Title: Modular Architecture for Computer Game Design 

Background: 

Most current architectures for games limit the reuse of code and modularity of the game engine. The result is that modifications that are specific to certain systems (such as the change from 2D to 3D graphics in, for example Warcraft 2 and 3) require that the game be remade entirely. One solution to this hindrance to development was proposed by Jeff Plummer in his paper “A Flexible and Expandable Architecture for Computer Games.” Plummer suggests writing a game as a “system of systems” in which the various systems of the game (e.g. Graphics, artificial intelligence, sound) operate on a central set of data that describes the current game world. This would allow developers to replace a single system while retaining the rest of the finished code. With the advent of middleware (i.e. Single systems built by specialized developers), this would allow developers to utilize several specially built systems in a single game.

Description: 

My project was to implement a game with a System-of-Systems architecture and then analyze the effect this architecture has upon the development process. I required that the final game be fully functional and fully featured, but the individual systems could be simple. 

I began by prototyping the individual algorithms that would be necessary for the game. These included basic graphics, data, and collision detection systems. After a fully functional game was completed, I designed the new architecture. I restructured all of the code into four classes: Data, Input/Output, Game Logic, and Physics. Data contained the information that described the game world, I/O accepted input and delivered graphical output, Game Logic governed the game rules (such as scoring), and Physics affected the movement of objects in the game, including collision detection. Upon the completion of these systems, the game was unchanged from the prototype version from the user's point of view, but it now exhibited a true System-of-Systems architecture.

I then began the third stage of development by adding an Artificial Intelligence class/system and an Enemy entity to the game. There was no previous preparation for this system in the code. This allows analysis of the effect of the architecture on the development process.

I determined that the data-centered nature of the architecture is its biggest asset. That I did not have to pass certain pieces of data around was extremely convenient. The interaction of systems was less effective. When adding the Enemy entity, I needed to add new code to all of the other systems in order to incorporate it properly. In order to get the full benefit of a System-of-Systems architecture, developers must abstract their algorithms as much as possible (or at least significantly more than I did) and standardize some of the code in order to allow efficient integration of new systems.

