
A Logarithmic Randomly Accessible
Data Structure

Tom Morgan
TJHSST Computer Systems Lab 2006-2007

Background
Dynamic arrays (such as vectors and array

lists) are commonly used among programs to fill
the places of arrays when the size is unknown
and intermediate insertions and deletions are
necessary. They are generally implemented as
arrays whose data is shifted around when
necessary and copied to a larger array when
extra space is needed. Tradition dynamic arrays
have O(1) random access, O(N) insertion (except
to the end where it is amortized O(1)) and O(N)
deletion (except from the end where it is
amortized O(1)).

Red-Black Trees have been extended to allow
for logarithmic access of the nth element,
however although this is similar to random
access it is not identical. Random access uses
sequential integral keys and will change the
keys of the other elements as elements are
added or removed.

3 1 4 1

5 9

2 2

24

6

Abstract
Making a data structure that performs like a

dynamic array but functions in logarithmic time
for all operations is the goal, but is by no means a
trivial one. The obvious solution is to use a tree of
some sort, but how?

By using a binary tree in which values are
stored at the leaf nodes and each node keeps
track of how many leaves there are below it, we
can quickly achieve logarithmic random access,
insertion and deletion in the average case but all
operations are linear on the worst case. To allow
balance the tree, a balanced search tree such as
a Splay Tree or Red Black Tree is used. These
trees are always balanced and by using their
balancing mechanisms and changing them to use
the random access system described above, the
goal is reached.

Procedures and Methods
The primary work in devising an algorithm is

conceptual, however putting it into code greatly
helps in fleshing out the ideas as well as
identifying flaws in the process. Similarly, when
put into code the efficiency of the general case
can be tested empirically.

The various attempts at randomly accessible
trees are implemented as classes in Java, and a
separate Java program is used for testing the
classes. The testing program allows for both
randomly inserting and deleting data as well as
sequential insertion and deletion so both random
and extreme cases are testable.

The original procedure was to make a
randomly accessible tree and then balance it but
the focus was later shifted to modifying an
already balanced tree to allow for random access.

Results and Conclusions
I have successfully coded up both a standard

Randomly Accessible Tree (as detailed above) and
a Splay Tree modified for random access
capabilities. Various algorithms have been
designed to improve the balance and efficiency of
the standard form but none can guarantee a
logarithmic bound.

The Splay Trees employ a “splay” function that
rotates accessed nodes to the root, thus giving
them amortized logarithmic run time for all
operations. I preserved this balancing
mechanism's usefulness while modifying it to fit a
Randomly Accessible Tree rather than a Search
Tree. I have also worked to achieve similar
results for a Red Black Tree.

public E get (int index)
 {
 if (getLeft() != null)
 {
 if (getLeft().getNumBelow() >= index)
 return (E)getLeft().get(index);
 index -= getLeft().getNumBelow()+1;
 }
 if (index == 0)
 {
 splay();
 return getValue();
 }
 return (E)getRight().get(index-1);
 }

