
Graphical Display of a Physics Simulation

Steven Oetjen
TJHSST Computer Systems Lab, 2006-2007

March 29, 2007

Abstract

A physics simulation, in order to adequately demonstrate physical laws and
predict an unlimited number of scenarios, must implement a broad range of math-
ematical equations and provide the user with the ability to set up a scenario with
whatever number of objects and arrangements of these objects that he desires. The
goal of this project is to create such a simulation.

1 Introduction

The desired physics simulation and graphical display must govern a set of objects un-
der the laws of physics, such as Newton’s laws of motion. Accuracy and precision are
important when measuring quantities for use in calculations, but it is also important to
have a simulation process all objects and apply physical laws efficiently. The program, in
other words, must run in real time or at a speed chosen by the user. Such a simulation is
worthwhile and valuable because it provides an opportunity to quickly and easily test or
verify phenomena, utilizing a computer’s ability to store, manipulate, and display data.
The results may attract the interest of many, including students needing an aid in their
understanding of the physical world and how it behaves. The results can also be used to
make or to confirm predictions on how certain scenarios will be resolved.

This simulation is intended to display objects placed by the user graphically and to
display information about those objects on a graphical user interface. The project will
allow the user to place any combination of objects, including particles, springs, and ramps,
in a graphical display, input values for these objects, such as constants, coefficients, and
variables, and run a simulation that will track these values and display the interactions
and positions of the objects graphically in two-dimensions. The scope of the simulation
will be limited to two-dimensions with particles, springs, and ramps, thus constricting
the field of study. The concepts involved are kinematics, dynamics and Newton’s laws,
conservation of momentum and collisions, gravitational force, and electric charge and
force. Variables such as mass, displacement, velocity, and charge, only to name a few,
are required, as well as the relationships between these variables in the form of equations.

1

2 Background

A similar simulation was written in Java by Erik Neumann, named “My Physics Lab” [3].
Newmann’s program consists of a series of java applets that run various scenarios based
on user input for chosen quantities. Rather than having a large interface in which the user
can create any scenario imaginable, with all the same laws governing each scenario,there
are several pre-set scenarios, each with a set of laws governing it, as other laws might
not be applicable. This organization allows Neumann to cover a broad range of objects,
including linear springs, pendulums, colliding blocks, roller coasters, and molecules. It
also graphs two quantities of the user’s choice over time, and provides mathematical
equations for all scenarios.

A model for pressure on a soft body was created by Matyka [7]. It takes into account
gravitational and spring forces, and pressure. It also implements a first order Euler
integrater to calulate force accumulations necessary for finding the volume of a body and
pressure force distribution. He applies these calculations to a 2D soft ball model and a
3D pressure soft body model.

2.1 Kinematics

Two-dimensional kinematics involve the position, velocity, and acceleration vectors of an
object [2]. Since velocity is the derivative of position, the linear approximation of x after
a small time interval ∆t is,

x = x0 + v∆t (1)

and the linear approximation of v after ∆t is,

v = v0 + a∆t (2)

As ∆t → 0, these approximations become more accurate in calculating position and
velocity, so a small time interval is necessary.

2.2 Collision Detection and Response

A method for improved collision detection applies matrices and vector space to a sweep
method over a polygon soup of triangles [6]. A much simpler method to apply to two-
dimensional circle objects to check for overlap is a simple comparison between the sum
of their radii and the distance between their centers.

r1 + r2 ≥
√

(x2 − x1)2 + (y2 − y1)2 (3)

When a collision is detected, that is, if condition 3 is true, then for an elastic collision,
the velocities of the objects involved must be changed so that both kinetic energy and
momentum of the system are conserved [8].

1

2
mav

2
a +

1

2
mbv

2
b =

1

2
mav

′2
a +

1

2
mbv

′2
b (4)

mava + mbvb = mav
′
a + mbv

′
b (5)

2

Solving equations 4 and 5 for v′a and v′b,

v′a =
ma −mb

ma + mb

va +
2mb

ma + mb

vb (6)

v′b =
2ma

ma + mb

va −
ma −mb

ma + mb

vb (7)

the velocities of both objects after the collision are found. These equations can be
extended to two dimensions by performing them for both an x- and y-component. Using
these methods for collision response, however, does not take into account angular effects
of collision. There are vector equations that can account for this [1].

vA
2 = vA

1 +
j

MA
n (8)

vB
2 = vB

1 +
j

MB
n (9)

j =
−(1 + e)vAB

1 • n

n • n(1
MA + 1

MB)
(10)

By finding the scalar j, based on the elasticity of the two objects and the normal vector
of there velocities before the collision, the velocities after the collision can be found.
Momentum is still conserved in both components, and the effects of the initial angle of
collision will be produced in non-head-on collisions.

2.3 Contact With Ramps and Response

In order to determine if a projectile is in contact with a ramp, the ramp can be repre-
sented by a linear equation of the form y = mx + b. Using variables bmin to represent
the y-intercept of the line, bmax to represent that intercept plus an additional rproj

cosθ
to

compensate for the radius of the projectile, and an additional trampcosθ to compensate
for the thickness of the ramp, two conditions must be true for contact between the ramp
and projectile.

xramp,1 ≤ xproj ≤ xramp,2 (11)

mxproj + bmin + trampcosθ ≤ yproj ≤ mxproj + bmax + trampcosθ (12)

If a projectile is in contact with a ramp, it exerts a force on it, and so by Newton’s
third law, that every action force has an equal and opposite reaction force, the ramp must
exert an opposite force back. This force is perpendicular to the surface of the ramp. The
equations for the force components exerted on a projectile due to the ramp, exerting
horizontal force, are

Fx = −Fhorizsin
2θ (13)

Fy = Fhorizcosθsinθ (14)

while the equations for the force components exerted on a projectile due to the ramp,
exerting vertical force, are

Fx = Fvertsinθcosθ (15)

3

Fy = −Fvertcos
2θ (16)

In addition, if conditions 11 and 12 are true, the velocity of the projectile must be
changed so that the component parallel to the surface of the ramp is unchanged, and the
component perpendicular to the ramp is reversed.

v′‖ = v‖ (17)

v′⊥ = −v⊥ (18)

The components of the projectile’s velocity are found parallel and perpendicular to the
ramp, using the equations,

v‖ = vxcosθ + vysinθ (19)

v⊥ = −vxsinθ + vycosθ (20)

If the perpendicular component of the velocity is negative, meaning the projectile is
going into the ramp, the velocity of the projectile needs to be changed so that the com-
ponent parallel to the ramp is unchanged and the perpendicular component is reversed.
In order to do this, adjustments are made using the following formulas:

vx = v‖cosθ + v⊥sinθ (21)

vy = v‖sinθ − v⊥cosθ (22)

By substituting equations 21 and 22 into equation 19, the desired relationship in
equation 17 is obtained.

v′‖ = (v‖cosθ + v⊥sinθ)cosθ + (v‖sinθ − v⊥cosθ)sinθ

v′‖ = v‖(cos
2θ + sin2θ) + v⊥sinθcosθ − v⊥cosθsinθ

v′‖ = v‖

Similarly, by substituting equations 21 and 22 into equation 20, the desired relation-
ship in equation 18 is obtained.

v′⊥ = −(v‖cosθ + v⊥sinθ)sinθ + (v‖sinθ − v⊥cosθ)cosθ

v′⊥ = −v‖cosθsinθ + v‖sinθcosθ − v⊥(sin2θ + cos2θ)

v′⊥ = −v⊥

2.4 Spring Force

Springs have a natural length, lnatural, the length at which they are at rest or equilibrium,
and at which they exert no force. Different springs also have different stiffnesses, and this
is reflected in a spring’s stiffness constant, k. Springs exert a force on each end according
to Hooke’s Law,

Fspring = −kx (23)

4

where x is the spring’s displacement beyond its natural length. The negative sign is
present because the force is a restoring force, meaning that it is in the opposite direction
as the displacement [9].

Springs are also subject to a damping force,

Fdamping = −bv (24)

where b is the damping factor and v is the velocity component of the attached object
parallel to the force of the spring. Again, a negative sign is present because the damping
force acts against the motion of the spring [?].

2.5 Inverse Square Forces

Gravitational force is the force that attracts all bodies of mass towards each other with
the force,

Fgrav = G
m1m2

r2
(25)

where G is the universal gravitational constant (G = 6.6742× 10−11), m1 and m2 are the
masses of the two objects, and r is the distance between the two objects [4].

Electrostatic force, or Coulomb force, is the force that attracts objects with different
charge signs and repels objects with like charge signs. The force behaves according to
the equation,

FCoulomb = k
q1q2

r2
(26)

where k is the Coulomb constant (k = 8.988× 109), q1 and q2 are the charges of the two
objects, and r is the distance between the two objects [5]

3 Development

There are several requirements that must be met to ensure success of the simulation.
Inputs must be doubles able to be parsed, given by the user through JTextFields, to any
given precision, in the range of doubles able to be stored in memory, and given as often as
desired by the user between runs of the simulation. Outputs must be displayed as objects
in their respective positions and values in JTextFields and JLabels, to an accuracy of a
±1% error, in the range of doubles able to be stored in memory, and given as frequently
as the Timer fires. Calculations for all the objects must be completed within the time
elapsed during the timer delay in order to keep the simulation time proportional to real
time. This proportionality will be created by the time scale factor the user provides to
speed up or slow down the simulation as desired.

Success for most of the requirements can be observed qualitatively, such as if objects
appear with different names and colors, if values are being recorded to a certain decimal
place, if objects overlap or collide properly, or if ramps are drawn with the correct slope
and thickness. The requirements that demand quantitative testing are the accuracy
of the output, and the efficiency of processing time. The output can be compared to
theoretical values or examined in terms of a known equation, and the processing time

5

can be judged by comparing elapsed simulation times to elapsed real time for different
numbers of active objects.

The project was developed by dividing functions into several iterations of design,
programming, and testing. The tasks of these iterations include implementing each con-
cept and set of equations and laws. These groups are kinematics, dynamics, momentum,
gravitation, and electrostatics. Each iteration proceeded with the following steps:

Design Classes, methods, and variables were added or modified, and the function of
each element and the means of communication of information between relevant
classes was determined.

Programming The necessary changes to the program were made. All programming was
done in Java, using Swing and AWT packages for graphics and GUI components.

Testing To test a given implementation of a law, the user will input arbitrary values for
all necessary fields involved in or dependent on that law. The output generated by
these random types of input will be compared to theoretical values derived from
mathematical formulas. To analyze the error, a percent error calculation will be
performed on these two values, and the accuracy will be gauged by that percent.
In this way, the accuracy of the program’s ability to model predictable phenomena
can be measured and displayed in chart format.

Aside from implementing equations and laws, several other components to the program
must be implemented.

1. GUI Structure and Layout

2. Graphics Panel Distance and Time Scale

3. Support of Multiple Objects/Multiple Types and Classes of Objects

4. Support of Coordinate and Polar Vector Conversions

5. Collision Detection

6. Improved Integration Methods

The major classes involved are the GraphicsPanel, which displays the graphical
output, and the GUIPanel, which displays the numerical output and reads in the user’s
input. Other critical classes include Projectiles and Ramps, the objects themselves
which store their own quantities, and ProjectileInputs and RampInputs, which provide
a GUI layout for input to each object. The architecture is designed so that changes in
the future can be easily accomodated. The program is modularized so that new features
can be added in without interfering with existing ones. For example, additional types of
objects can be created by creating a class for the object and a class for its inputs. Room
on the GUI can be allocated for that input, and functions can be added to draw and
implement appropriate laws for those objects.

6

4 Results and Conclusion

To be a successful and useful simulation, the program must implement all equations and
relationships correctly, and process all data efficiently. Specific requirements must exist
for processing time, kinematics, collisions, ramp forces, and ramp collisions.

4.1 Processing Time

No matter how great the number of objects, the program’s calculations must not take
longer than the timer’s firing delay, so that the program runs proportionally to real time.
For the processing time analysis, the simulation was run for 10 seconds for each number
of objects, nobj, and the real and simulation times elapsed were recorded, as well as a
percent error calculation.

Processing Time Analysis
nobj tsim treal % error
1 9.5 10.30 7.77
5 9.4 10.10 6.93
10 9.5 10.07 5.66
50 9.3 9.86 5.68
100 9.3 9.99 6.91

The program’s processing time successfully meets the requirement, because there is
no upward trend in simulation time when the number of objects is increased, so it is not
being slowed down by multiple objects, and it is running proportionally to real time. The
percent errors appear large because of the human error involved in starting and stopping
both a stopwatch and the simulation. The times are consistent, and the percent errors
stay relatively constant.

4.2 Kinematics

Using any given inputs, a projectile’s position at any time later should be accurate to
its theoretically predicted position within ±1%. To test the program’s accuracy with
kinematics in cartesian coordinates, the program was given the following inputs, and the
outputs for x were recorded at various times. These values are compared with theoretical
values, and a percent error calculation is shown.

Value Accuracy for Cartesian Coordinates
Inputs

x0(m) vx0(m/s) ax0(m/s2)
7.893 9.342 1.087

Outputs

7

t(s) xsim xtheor % error
1.4 21.961 22.037 0.345
2.2 30.957 31.076 0.383
3.4 45.755 45.939 0.400
4.5 60.695 60.938 0.399
5.5 75.418 75.715 0.392
6.2 86.371 86.706 0.386
7.2 102.942 103.330 0.376
8.1 118.785 119.222 0.367
9.3 141.279 141.781 0.354
10.2 159.176 159.727 0.345

Note: theoretical values were calculated using the equation for constant acceleration,
x = x0 + vx0t + 1

2
ax0t

2.

The accuracy of the values for cartesian coordinates meets the requirement, because
for all of the checked points in time, the simulation’s value was within ±1% of the
theoretical value.

To test the program’s accuracy with kinematics in polar coordinates, the program was
given the following inputs, and the outputs for x were recorded at various times. These
values are compared with theoretical values, and a percent error calculation is shown.

Value Accuracy for Polar Coordinates
Inputs

|r|(m) θr(
◦) |v|(m/s) θv(

◦) |a|(m/s2) θa(
◦)

32.725 45 7.834 120 2.087 240
Outputs

t(s) |r|sim |r|theor % error
1.0 34.629 34.525 0.302
2.2 35.990 35.764 0.631
3.3 36.292 35.974 0.884
4.1 36.166 35.805 1.008
5.1 36.148 35.782 1.021
6.4 37.879 37.627 0.670
7.2 40.893 40.781 0.275
8.4 49.215 49.369 -0.311
9.0 55.186 55.476 -0.523
10.2 70.570 71.116 -0.768

The error of the values stayed relatively constant, but did reach above a 1% error.
This could be because during previous tests, only one dimension was tested, but for this
test, both dimensions were necessary because of the nature of polar coordinates. Error
could have multiplied with two dimensions. Accuracy in two dimensions is not as high
as desired, so a better method of integration is needed to increase the level of accuarcy.

8

4.3 Collisions

For any collision between two objects, the momentum of the system before the collision
must be equal to the momentum after the collision, and for elastic collisions, the same
is true of kinetic energy. To test this function, two objects with different masses and
velocities were collided, and the initial and final momentums and kinetic energy values
were calculated.

Two Objects Before and After Collision
Object vx, vy px, py KE v′x, v

′
y p′x, p

′
y KE ′

A 20.0 20.0 200.0 5.618 5.618 56.180
0.0 0.0 -8.989 -8.989

B 0.0 0.0 0.0 14.382 14.382 143.820
0.0 0.0 8.989 8.989

Σpx 20.0 Σp′x 20.0
Σpy 0.0 Σp′y 0.0

ΣKE 200.0 ΣKE ′ 200.0

Momemtum was conserved in both the x- and y-components, and kinetic energy was
conserved as a scalar. The objects bounced off each other with the appropriate angle,
meaning that angular effects of a collision were correctly produced.

4.4 Ramp Forces

When a projectile is exerting a force on a ramp, the ramp must exert an equal and
opposite force on the projectile. With gravity acting on the projectile, it should slide
down the ramp, accelerating parallel to the ramp’s surface. A range of angles, both
positively and negatively sloped, will be tested to ensure projectiles accelerate parallel
to the surface in all cases. The angles to be tested will be -60◦, -45◦, -30◦, 0◦, 30◦, 45◦,
and 60◦, all measured from the positive x-axis.

Acceleration Direction of Projectile Sliding Down Various Ramps
θramp θacceleration

-60.0 -60.0
-45.0 -45.0
-30.0 -30.0

0.0 0.0
30.0 30.0
45.0 45.0
60.0 60.0

The projectile always is accelerated by the ramp in the same direction the ramp slopes
in. Therefore, this test verifies that for any slope of the ramp, a projectile will accelerate
in that same direction.

9

4.5 Ramp Collisions

When a projectile has a velocity component perpendicular and into the surface of a
ramp, and they collide, the angle of incidence must equal the angle of reflection after the
projectile bounces off. A range of angles, both positively and negatively sloped, will be
tested to ensure projectiles bounce off of ramps correctly. The angles to be tested will
be -60◦, -45◦, -30◦, 0◦, 30◦, 45◦, and 60◦, all measured from the positive x-axis. For each
velocity adjustment test, the projectile had the same initial velocity of 10 m/s, directed
at -90◦ clockwise from the positive x-axis, and the angle of the ramp varied.

Angles of Incidence and Reflection of Projectile Reflected Off Various Ramps
θramp θ′v θi θr

-60.0 -30.0 30.0 30.0
-45.0 0.0 45.0 45.0
-30.0 30.0 60.0 60.0
0.0 90.0 90.0 90.0
30.0 150.0 60.0 60.0
45.0 180.0 45.0 45.0
60.0 -150.0 30.0 30.0

The angle of incidence is always equal to the angle of reflection, no matter what
the angle of the ramp is. Therefore, this test verifies that for any slope of the ramp, a
projectile will bounce off of correctly, as v′‖ = v‖ and v′⊥ = −v⊥.

4.6 Springs

Spring force was tested by recording the position and acceleration of an object attached
to a spring for 20 seconds with three different damping factors, b = 0, b = 0.25, and
b = 0.5.

Initial values of Objects
projectile

x 15.0
y 0.0
|v| 0.0
|a| 0.0

spring
k 1.0

lnatural 10.0
(x1, y1) (0, 0)
(x2, y2) [projectile]

Position and Acceleration of Object on Spring, b = 0
When the spring has a damping force of 0, the projectile moves along a sinusoidal

path centered at its natural length, 10. The acceleration curve behaves like the second
derivative of the position curve, as it is 0 at the inflection points of position, that is,

10

when the spring is at its natural length. The acceleration, and therefore force (because
the mass is 1.0 kg) behaves properly, because it always carries the opposite sign of the
difference between the natural length and current position, and both curves have the
same amplitude (because the spring constant k = 0). The projectile’s peak position,
however, increases over time. The maximum position was 15.850, which is an error of
5.7% from the original position of 15. The propogation of error in the calculations of
position is resulting in a creation of energy over time.

Position and Acceleration of Object on Spring, b = 0.25

When the damping factor is increased to 0.25, the position continues to center around
the spring’s natural length of 10, but the amplitude decreases over time. The acceleration
is still behaving as the second derivative of the position. It moves in the opposite manner
of the position curve.

Position and Acceleration of Object on Spring, b = 0.5
When the damping factor is increased to 0.5, the position curve approaches the natural

length of 10 very rapidly, barely performing two cycles before it is oscillating between
9.5 and 10.5. The acceleration continues to be a reflection of the position curve, showing

11

that the force behaves correctly in accelerating the object towards the natural length.

4.7 Inverse Square Forces

Gravitational force was tested by recording the position and acceleration of an object
with small mass as it is affected by the gravity of a massive object for 20 seconds.

Initial values of Objects, Gravitation Test
Small Object

m 1.0
r 1.0
q 0.0
x 0.0
y 0.0
|v| 0.0
|a| 0.0

Large Object
m 1.0× 1014

r 5.0
q 0.0
x 20.0
y 0.0
|v| 0.0
|a| 0.0

Position and Acceleration of Small Object Affected by Gravity

For the gravitation test, the position curve shows the repeated collision with the
large body at position x = 20, and the decreasing maximum height of each bounce. The
acceleration begins at a certain value, based on the initial distance of 20 m. It increases
as the small projectile gets closer to the large one, and there is a discontinuity where the
collision occurs. Here, the acceleration begins decreasing as the objects move apart.

12

Coulomb force was tested by recording the position and acceleration of two objects
with opposite charges for 20 seconds.

Initial values of Objects, Electrostatics Test
Positive Object

m 1.0
r 5.0
q 0.001
x -20
y 0
|v| 0.0
|a| 0.0

Negative Object
m 1.0
r 5.0
q -0.001
x 20.0
y 0.0
|v| 0.0
|a| 0.0

Position and Acceleration of Objects of Opposite Charge

For the electrostatics test, the two objects’ positions mirror each other, as they contin-
ually bounce off each other. They always have opposite coordinates, and their maximum
height decreases with each bounce. Similarly to the gravitation test, the acceleration
curves peak in magnitude at the time of the collision. They increase as the objects
approach each other and decrease after the collision, after they move apart, until the
maximum distance is reached. The acceleration curves then continuously reach a min-
imum, resulting in a slope of zero for the position curve. The forces are caluclated
correctly, and the motion resulting from the forces appears correct.

13

4.8 Conclusion

The simulation is successful in most areas, and is certainly useful for predicting physical
phenomena and aiding students in their understanding of physics. All calculations are
performed within the timer delay, so there is no lag when the simulation is run, and all
formulas for effects of collision have been verified by testing. Kinematics in one dimension
are calculated within ±1%, but the major flaw is that when expanded to two dimensions,
the calculations can occasionally rise slightly beyond the desired ±1% error. To fix this,
a more accurate method of integration is needed to counteract error that propogates from
linear approximations.

References

[1] C. Hecker, “Physics Part 3: Collision Response”, 1997. Definition Six, Inc.
http://chrishecker.com/images/e/e7/Gdmphys3.pdf

[2] D. C. Giancoli, Physics: Principles with Applications, Prentice Hall, 1995.
http://wps.prenhall.com/esm giancoli physicsppa 6/0,8713,1113739-,00.html
(November 2, 2006)

[3] E. Neumann, “My Physics Lab - Physics Simulation with Java”, 2004.
http://www.myphysicslab.com/ (November 2, 2006)

[4] E. W. Weisstein, “Gravitational Force”, Wolfram Research, 2007.
http://scienceworld.wolfram.com/physics/GravitationalForce.html

[5] E. W. Weisstein, “Coulomb’s Law”, Wolfram Research, 2007.
http://scienceworld.wolfram.com/physics/CoulombsLaw.html

[6] K. Fauerby, “Improved Collision Detection and Response”, 2003.
http://www.peroxide.dk/papers/collision/collision.pdf (December 11, 2006)

14

[7] M. Matyka, “How To Implement a Pressure Soft Body Model”, 2003.
http://panoramix.ift.uni.wroc.pl/ maq/soft2d/howtosoftbody.pdf (November 2,
2006)

[8] R. Fitzpatrick, “Collisions in 1-dimension”, 2006.
http://farside.ph.utexas.edu/teaching/301/lectures/node76.html (November 30,
2006)

[9] R. Vawter, “Hooke’s Law - Spring Force”, Western Washington University, Depart-
ment of Physics and Astronomy, 2006.
http://www.ac.wwu.edu/ vawter/PhysicsNet/Topics/SHM/HookesLaw.html

15

