Project Description



Student: Steven Oetjen

Title: Graphical Display of a Physics Simulation



Background: 

A physics simulation, in order to adequately demonstrate physical laws and predict an unlimited number of scenarios, must implement a broad range of mathematical equations and provide the user with the ability to set up a scenario with whatever number of objects and arrangements of these objects that he desires.

The primary purpose of this simulation is to display these objects placed by the user graphically, and to display information about those objects on a graphical user interface. The scope of the simulation will be limited to two-dimensions with particles, springs, and ramps. The concepts involved are kinematics, dynamics and Newton's laws, conservation of momentum and collisions, gravitational force, and electric charge and force. Variables such as mass, displacement, velocity, and charge, are required, as well as the relationships between these variables in the form of equations.

Description: 

Creating a simulation with several objects interacting requires a means of summing all the forces each object exerts on another, either from a projectile colliding with a ramp, a spring exerting a force on an attached projectile, two massive objects exerting gravitational forces on each other, or two charged particles exerting Coulomb force on each other. The program must perform this summation for all aspects of forces in each component and must check for collisions between objects during every time interval 

A major aspect of the program is to accurately calculate the position of projectiles as a result of various forces. A modified Simpson's Rule is used for integration. Rather than using a known behavior function for acceleration, a quadratic equation is found as a solution to the current and previous two acceleration data points. That parabola is integrated over the time step using the power rule. This method is far more accurate than taking a Riemann Sum or any other linear approximation method, because the use of a parabola is less likely to drastically underestimate or overestimate the integral between the two points of the acceleration curve.

The major classes involved are the GraphicsPanel, which displays the graphical output, and the GUIPanel, which displays the numerical output and reads in the user's input. Other critical classes include Projectiles, Ramps, and Springs, the objects themselves which store their own quantities, and ProjectileInputs, RampInputs, and SpringInputs, which provide a GUI layout for input to each object. When an object is created and named, its input panel is placed as a tab in the GUIPanel, and the user is able to edit its values. Users are also able to save object configurations as text files, and open those scenarios for later use.

