
TJHSST Senior Research Project
Random Map Generation and Pathfinding

with Dynamic Point Costs
2006-2007

Olex Ponomarenko

June 11, 2007

1 Abstract

An abstract representation of a map was used to incorporate realistic con-
ditions not currently in place in commercial path finding programs. As the
project is focused on the back-end of random graph generation and search-
ing, it can be useful for other projects as an educational tool about efficiency
and memory usage, as well as more sophisticated frontend systems. The
project incorporates more realistic aspects of traffic movement such as traf-
fic light and stop sign delays in order to provide realistic delay calculation
when traversing a map. Other factors such as whether one is turning left
or right are also considered in delay calculation. Traffic light intersections
are weighed in favor of larger roads, meaning smaller roads tend to have less
green-light time on average than larger ones intersection with smaller roads.
Exits are placed only in realistic locations, meaning a tiny driveway won.t
have its own exit onto I-95.

The map is generated using a sophisticated random graph generator,
which was also developed as part of this project. The graph generator works
by assigning random location a higher density value, making roads stem-
ming from that location more likely to be larger roads . interstate and local
highways, so on. Residential areas are properly structured with a road ar-
chitecture that resembles real life, and intersections are placed with realistic

1



delay mechanisms (traffic lights, stop signs, different kinds of exits, etc). The
entire project is also designed to be easily testable, flexible, and scalable. All
of the parts of the project, from the shell to the final heuristic were be de-
signed and created with a large-scale problem in mind. The Java display
is more of a testing and debug tool, and the vast majority of the work is
done on the back-end, with little visual representation. The python code
for generating the graph and searching is also meant to be a tool for future
projects, perhaps on learning heuristics and similar endeavors.

2 Introduction

The problem we are facing with the commercial programs is that they often
ignore delays caused by stop signs and traffic lights on roads. For short dis-
tances, this often results in overly-complicated paths that are slower than a
longer but simpler path. This project is aimed at creating a primarily back-
end program which will incorporate such realistic features and provide fun-
tionality to randomly create and search through maps with such attributes.
Both the magnitute of improvement as well as analysis of the applicability
of dynamic point costs on the large scale will be included.

The graph generator and the backend of the program were created us-
ing the Python computer language. This language is very easy to use, very
feature-rich, and fast enough for the scale of that I’m working with. The pro-
gram started out from very basic maps, without speed limits and path costs,
and advanced on to more complex ones with added features such as inter-
sections, traffic lights, and stop signs. The solutions were checked manually
in the early stages, and later using slower but guaranteed-correct searching
techniques, ensuring that the heuristic evaluation worked well. In addition,
a Java program was also created to display the randomly generated graph
and solutions in order to avoid obvious errors and provide visual results.
However, the Python code includes all of the features of the program besides
display, and the display is not needed to run and interact with the important
parts of the code. This results in a program that can be incorporated into
bigger projects easily.

As resource use is also an important part of the project - it is a major
limitation to including dynamic point costs within existing map pathfinding
programs and algorithms - algorithms will be optimized for fastest results to
see if this project is feasable on a large scale. Everything was looked over

2



multiple times to make sure no extra data is passed around between meth-
ods, and that no unnecessary lists, maps, and other structures are created.
Several common optimization techniques as well as heuristic aids were used
to improve processing time with additions to data size.

3 Background

This topic has obviously been covered in commercial programs such as google
maps and mapquest. Most such programs, however, only consider the max-
imum speed limit when searching for the fastest possible path. Some of
the other important factors of travel speed, such as delays caused by traffic
lights and stop signs, are ignored. There isn’t a whole lot of research out
there on complex graph traversal and path finding - few consider the real
world application in maps and travel and instead focus on applications in
problem-solving programs and genetic algorithms.

Consider, for instance, an intersection of a fairly small community road
with a larger state road. Both are sizable, and do not have any stop signs,
nor are they highways with a whole lot of exits. The intersection has traffic
lights, but the road sizes are different - one is clearly larger than the other,
and traffic lights are favored toward the larger road, giving them a faster
pass-through time than to those on the smaller road. Another level of com-
plexity is achieved with directionals. Turning right, on average, is very quick,
and turning left, especially from the smaller onto the larger road, is slower.
Google Maps and Yahoo account for the distance that you travel, but do not
count such delays as traffic lights.

4 Structure of the Program

4.1 Random Graph Generator

While it is important that the program considers realistic obstacles when
searching for the quickest path through a map, it is just as important that
the map that the program is using is believable and realistic. The random
graph generator created for the program is fairly effective at achieving both
of these requirements. While it does not properly account for population
density and create concentric highway structure like in real life, the structure
makes sense: there are no abrupt ends to larger roads, and there are plenty of

3



smaller roads connecting to the highways, and there are differently-weighed
locations connected by larger roads. An inner city can also be simulated by
increasing certain parameters.

The graph generator creates a map, comprised of the two auxillary classes
together in a structure of dictionaries (also known as maps). This allows O(1)
access time to both connecting locations and the roads that connect to them,
allowing the heuristic to perform its function effectively (also O(1), for both
the control and the sophisticated heuristic). In certain cases, only subsections
of roads are stored in the map, which have references to their ”parent” road.
This avoids considering some curved roads as right or left turns and allows
for intersections of non-perpendicular roads to be accounted for correctly.

Rigorous testing (1000 maps of 800x800 pixels) was conducted to check
for errors with the program, as well as peer review of numerous such maps
for realism and consistency.

4.2 Auxillary Classes

In terms of structure, there are two main component classes to the random
graph generator: Location and Road. The Location class is used to repre-
sent both locations such as certain buildings and intersections between two
or more roads. This allows for flexibility both in terms of searching and opti-
mizing the heuristic. A user can select to go from an intersection to another
intersection, rather than simply from one building to another. The heuristic
can exploit this similarity between buildings and intersections and provide
faster results. Aside from its connecting roads, a location also provides its
weight and a single int for the number of intersections for the heuristic.

The Road class represents all kinds of roads that are out there. Whether
it is a small residential road or a state highway, the Road class is used.
Intersections of roads are realistically represented. Highways do not have
exits onto small roads, traffic lights are favored to the larger road, and the
amount of smaller roads is greater than the number of highways. Aside from
the locations between which the road is situated, it also provides its size (from
which the kinds of intersections one can encounter can be extracted), the
number of intersections (used by the sophisticated heuristic), and refereces
to subsections of the road between intersections.

4



4.3 Display

There is also a Java-based display that was developed for this project, which
displays the randomly-generated graph as well as the latest search through
the map. There were simple storage classes built for the Java program that
corresponded to roads and locations in the python code. All data was passed
using a single text file. Graphics2D and java.swing graphics were used to
create the image.

The Java section of the project, however, is completely separate from the
python code, and is in no way necessary to use the back-end code. This
avoids the middle-man if another project is to use my code. If someone
decided to apply a learning heuristic to my code, they would only need to
work either within the eixisting Python code or in communication with the
Python code, and wouldn’t have to worry about the clunky Java display and
input.

4.4 Searching

Two varieties of searching were done, both using the A* algorithm. There
was a ”control” heuristic and evaluation that did not account for point costs.
In other words, it simply used distance divided by speed limit to determine
the cost between locations. The more sophisticated heuristic had additional
cost added to roads where a left turn had to be made, or strings of road with
lots of disadvantageous intersections.

Admittedly, there is no certainty that Google and MapQuest do not use
point costs. The most prevailing evidence against them having point costs
comes out when getting directions from a location on a small street to a very
near location (300 feet perhaps), but one that is on a different, larger road,
onto which you have to take a painstakingly long left turn. After finding a
number of examples, google has consistently responded with answers such as
5 seconds. In a case right next to my house, there is a wait time of at least
30-40 seconds on average, as the traffic light is heavily favored toward the
other road. These kinds of anecdotal examples as well as the sheer size and
scope of such a feature are the primary evidence that Google as well as other
programs simply use the distance times the speed limit for the evaluation of
cost, and disregard point costs.

5



Figure 1: A portion of the data collected during the project. Note the
minuteness and consistentency in travel time improvements when using the
point-costs heuristic while searching for the fastest path. The equations for
the trend lines are shown.

6



5 Results and Conclusion

The program proved most useful in small-scale situations simulating cities,
where you might have to make a turn every few blocks. The difference
between right and left turns in this case became apparent. In most test cases
the speed-limit-only search took the same road as the search with point
costs, and resulted in an the same path anywhere from 72% to 92% of the
time. Coupled with the fact that an improved seach was sometimes along the
lines of < 5 seconds’ improvement, the effective improvement in travel time
was low. Over the range of 0-16 mile range, the point-cost algorithm made
improvements in just 7% of the paths, with an average improvement of 4.6%
in the better paths. This results in only a .3% effective improvement over a
more conventional searching algorithm. On smaller data sets, especially on
searches between 1 and 3 miles long (right about where multiple path choices
appear, but still fairly small scale), the program performed somewhat better.
12.4% of all searches were improved, with an average of 7.2% improvement
amongst the paths that did improve. This, however, still only amounts to
a .89% overall improvement over the control algorithm. As expected, when
scaling up the delay (which in effect decreases the pixel distance / simulated
distance ratio), my search performs better and better than a search that
doesn’t account for intersections. This action, however, decreases the realism
of the generated maps by a similar factor.

It is important, however, to also look at the resources used. Had google
the choice to improve all of their inner-city searches by 3-5% at the cost of a
3-5% increase in data and processing time, it is likely that they would go for
it. The size of this data, however, is much larger. The program developed for
the project, although not perfect, used almost 20% more bytes per location
and road in order to make the heuristic and dynamic point cost calculation
possible, and an additional 30-40% locations (Although large-scale projects
already have locations set up for some sections of road and most intersections,
and would not suffer an increase in locations). The heuristic calculation time
was also greatly increased - almost a 35% difference in select cases, which
would be impractical in a large-scale environment, even though it’s on the
same order of magnitude.

While this area of pathfinding may be impractical now, the fact that there
is room for improvement is important to note. When there are discrepan-
cies of 10-12%, however rare, between the fastest travel path and the path
returned by a currently widely used search, there is definitely some place

7



where the search fails. While this project fails to deliver a viable solution to
the problems in realistic map pathfinding, it does provide insights into the
possibilities and limitations of the algorithms and methods used.

6 Discussion

The addition of traffic obstacles to path finding techniques in maps has a
greater effect on small-scale applications such as cities. When it comes to
cross-country road trips where one simply drives on the highway for a great
majority of the trip, the program will not be very valuable. It is designed to
study different road patterns for commuters with several choices for roads.
It is valuable in figuring out whether to take the extra couple miles and use a
highway versus using a smaller, direct road with a lot of intersections. Here
there are some limitations to the project conducted. Since I did not have any
real-life data and mapping, and instead used a randomly generated graph, no
matter how good my algorithm for creating the map was, it is distinguishable
from real maps. It is likely that results would be better with a real map, as
they tend to have more intersections and a much more grid-like structure in
many places, which is where point costs become more relevant.

Further research into real-life traffic patterns and delay caused by differ-
ent kinds of traffic obstacles would be the obvious next step for the program.
The better the approximations for such delays, the better the program will
be at pointing the user in the right direction. Another extension could be
incorporating this structure into a traffic simulation with a dynamic search,
perhaps even showing real-time fastest paths as traffic load changes. Com-
bined with a network of live empyrical data feeds, this can be expanded to be
a great real-time searching tool. For a large scale implementation, however,
porting the program to C and other faster languages would be needed, as
Python is not meant to handle such large pieces of data and processing.

References

[1] T. Cain, “Practical Optimizations for A* Path Generation”,
A.I. Game Programming Wisdom, Charles River Media, 2002.

[2] P. C. Chen, Y. K. Hwang, “SANDROSA Dy-
namic Graph Search Algorithm for Motion Planning”,

8



IEEE Transactions on Robotics and Automation, Vol. 14, No. 3,
June 1998.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.
Stein, “Graph Traversal and Pathfinding Algorithms”,
Introduction to Algorithms, Second Edition, MIT Press, 2001.

[4] G. Johnson, “Avoiding Dynamic Obstacles and Hazards”,
A.I. Game Programming Wisdom 2, Charles River Media, 2004.

[5] “Roadway Extent, Characteristics, and Performance”, U.S. Department
of Transportation Federal Highway Administration. Retrieved February
22, 2007, from http://www.fhwa.dot.gov/policy/ohim/hs03/re.htm

[6] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, pp.
97-104, Prentice Hall, 2002.

[7] B. Salomon, M. Garber, M. C. Lin, D. Manocha, “Interactive Navigation
in Complex Environments Using Path Planning”, University of North
Carolina Department of Computer Science. Retrieved January 9, 2007,
from http://gamma.cs.unc.edu/Navigation/navpath.pdf.

9


