
Computer Systems Research Paper Draft
Machine Learning with Othello

Computer Systems Lab 2006-2007

Nick Sidawy, Period 5

June 12, 2007

Abstract

Machine learning is a new field that has been coming more into
focus over the past years. Having computers being able to adapt to
different environments and learn from experiences is important with
the progression of technology and the evolution of robotics. However,
these deal in complex systems with different factors to consider. In
order to learn and apply machine learning it is helpful to start with a
more simple system which will facilitate the learning of the basics. To
get started, I have chosen the board game of Othello as my system.

1



1 Introduction

1.1 Purpose and Goal

The purpose of this research project is to implement machine learning with
artificial intelligence for Othello. The reason why I chose this project is two-
fold: first, to create a very effective Othello AI for anyone’s enjoyment, and
second and more academically oriented, is to gain a deeper understanding of
machine learning, a subject which I am interested in.

The project itself is broken up into three different uses of machine learning
and artificial intelligence. The first is the use of an effective forward-checker
for my AI. The second is the use of the genetic algorithm to formulate the
best evaluation function for the AI to use. My last implementation is to have
the AI learn from each move it makes. Therefore as it plays more and more,
it will perform faster and at a higher level. The first two uses are on the
beginner side of machine learning, while the last one is more difficult and
will be where most of the ”learning” will take place.

2 Background and review of current litera-

ture/research in this area

Machine learning is an extensive field of study. Most of what is done with
machine learning is tied to artificial intelligence which is why Othello seemed
to be a good vessel for my research. It is simple enough game for me to
work on, yet difficult enough to keep me working throughout the quarters.
Obviously machine learning is not limited to board games. For example,
recently at MIT, students created a small robot with an artificial intelligence.
The goal of the project was to implement machine learning so the robot
could to teach itself to walk using trial and error. Furthermore, the robot
learned to adapt to walking on different terrains, constantly learning from
its experiences. The project was a success.

Although this seems as if it is far away from an Othello artificial intelli-
gence, it is closer than one might think. A student last year used machine
learning (genetic algorithms) in order to create the best evaluation function.
As I have stated, I would like to do something similar to this but also go
a step further by having it learn from the its own moves. Most of what I
use and learn to complete this project will come from the CSL’s Artificial

2



Intelligence book.
It is important to realize that although my research is being used as

gateway to a higher knowledge of machine learning, this type of artificial
intelligence is heavily researched and is not strictly beginner’s subject. The
best example of this is ChessMaster: 10th edition. This is perhaps one of
the best board game artificial intelligences and has been able to defeat the
best human chess players the world has to offer.

3 Procedure and Methodology

3.1 Overview, Requirements, and Development plan

The goal of this project is to create an effective Othello Artificial Intelligence
Most of this project will be coded in java because it is fast and contains

many of the tools that will be necessary for my project, such as timers and
GUI’s that are simple to create and use.

The project is broken up into several smaller programs. This way I can
work on interconnected parts of the project without having to worry about
causing an error if a tweak is made in one program.

The project is seperated into three distinctive interations:

1. The creation of a GUI along with Artificial Intelligence that the com-
puter will use to play games.

2. The use of the Genetic Algorithm in order to find the most effective
Evaluation Value set.

3. Having the computer learn from the moves it makes and storing this
information for later use in order to increase the level of play and
efficiency.

3.2 Research Theory and Design Criteria

3.2.1 Iteration One

The first component of this iteration was to create an interactive GUI (Gen-
eral User Interface). At first the goal of the GUI was to just be a visualization
of the games played, whether they are simulations between two CPU’s or
games involving human players. However, I realized it would be important

3



to have a GUI which would be allow the user to play as many games as was
thought necessary and would let the user switch between simulations and
human played games in one running of the GUI, as opposed to having to end
the program and re-run it.

Figure 1: The final version of the GUI.

In order to have an interactive game board which displays the game pieces
I had to create a class called ”MyButton”. The ”MyButton” class is an
extension of JButton. The important difference between the two is that it
contains a paint component which enables the button to be colored anyway
necessary. Furthermore, it stores two integers which tell the ”MyButton”
what color space it is and which piece, if any, currently occupy a given space.
Depending on which integers are stored, it will paint itself accordingly.

In the final version of the GUI everything is controlled with the mouse.
The user can play or simulate as many games as they wish without having
to restart or end the program. Games involving human players include the
use of ”Undo” and ”Restart” buttons along with allowing the human player

4



to change the type of AI it plays during a given match.
The two main algorithms that were worked on during this quarter are

the forward-checking and evaluation methods. The forward-checker works
by looking through each possible move that the computer has, making one of
the moves, looking at the moves the opponent is presented with, and repeats.
In other words, the goal is to traverse a tree of possible moves and to pick the
move that will lead to the best scenario down the line. The ply determines
how many levels of the tree it goes through. The trick about this algorithm
is that at each level of the tree it picks the move that is best for which player
it is simulating for. Therefore, the computer assumes that its opponent will
play perfectly. This is why it has been labeled the Minimax algorithm. First
it looks for the move that is best for it, then at the opponent’s move that
will be worst for it. (See Diagram A)

The speed of the program is exponentially related to the ply, the amount
of moves it searches ahead, of the artificial intelligence (O(np) where p is
the ply). It is important to realize the substantial toll that making the AI

5



slightly better has on the runtime.
The other algorithm that was worked on is the evaluation function. This

function returns a number to the Forward-Checking method rating how good
a specific scenario is for a player. It does this based on the positions of the
pieces and amount of available moves for each player. For example, pieces
in the corners are very valuable so they will add many more points to the
rating then a piece near the center.

3.2.2 Iteration Two

The values used to evaluate a given Othello board are very important for
picking the best move and I chose to use the Genetic Algorithm to find
the best values for evaluating a given board. The Genetic Algorithm follow
simple darwinian rules of life. In short, it uses evolution and survival of the
fittest to create the

There are three main components of the Genetic Algorithm:

1. The population (A set of different evaluation values)

2. The fitness evaluation (The way of testing how well a set of evaluation
values performs)

3. The Splicing and Offspring (The production of a new, improved set of
evaluation values)

Each cycle of the Genetic Algorithm has two steps. First, the population
(eight sets of evaluation values) is tested against the fitness function. In my
problem, I put each evaluation set in a game against an opponent evaluation
set which stays constant throught out the cycle (or generation). The two
evaluation sets use the same Minimax algorithm in a game of Othello with
the only difference being how the two CPU’s rate a board. Depending on
how well a member of the population does against the fitness function, it
receives a score.

The second step involves the creation of the offspring (eight new evalua-
tion sets) through splicing.Thescore a given evaluation set receives from the
fitness function determines the likelihood it will be chosen for reproduction.
Obviously the better a set performs, the higher likelihood it will be chosen for
reproduction. Two sets (Set A and B) are chosen based on the probabilities
and a crossover point is chosen at random for the sets. Next, the two sets

6



will splice by taking all the values before the crossover point of Set A and
combining them with the values after the crossover point of Set B. Then, the
opposite is performed.

This process is done four times so the offspring (next generation) is cre-
ated and can be tested against the fitness function. There is also a prede-
termined chance that a mutation may occur. A mutation is when a value
on a specific set is put to a random value and helps prevent the evaluation
sets from all reaching the same point (a plateau). In the event a plateau is
reached and all the sets in a generation are the same, then the fitness func-
tion will become the one of the sets of the generation and eight new sets will
be created by random. In theory this will result in the creation of stronger
and stronger evaluation sets until an optimal point is reached.

3.2.3 Iteration Three

The third iteration is focused more on the machine learning aspect of the
project than any of the other iterations. The goal of this iteration was to
create a new program to complete three tasks:

1. Storing information from each move the AI makes.

2. Saving the data in a file so it can be used game after game.

3. Loading data from the file and putting it into a HashMap for quick
access during a game.

By storing information concerning the move chosen by the forward-checker,
it will help the AI be more efficient and effective in later games when similar
situations come up. For example, if the AI gets a board that is the same as a

7



previous board it has a encountered (or a reflection of that board) then all it
will need to do is to see what it did the previous time and avoid traversing the
tree of possible moves. On the other hand, this information may be used to
increase the effectiveness of the AI by using the information after traversing
the tree of possible moves in order to search several moves deeper without
taking up any extra time. Ideally, a combination of these two techniques
would be used.

Figure 2: A small portion of the data after it has been saved in a text file.

The first step of the iteration was to decide how to store the information
so it could be retrieved quickly and what information to store . The obvious
choice for the first question was to use a HashMap. However, the second
question was a little trickier. Since a HashMap is being used, the boardstate
is the best option as a key. To do this, the boardstate is stored as a string of
0’s, 1’s, and 2’s that is 64 characters long, where 0’s empty spots, 1’s have
a black piece, and 2’s have a red piece. At the beginning of each boardstate
string a ’1’ or ’2’ is inserted to indicate whose turn it is. The value associated
with each key is the move that the AI chooses and the evaluation of the board
reached with the chosen move. Because an array cannot be stored as a value

8



in a HashMap these two pieces of data are stored as a single string seperated
by an underscore. In order to quadruple the data, anytime data is collected
for a board, it is recorded for each of its possible reflections: horizontal,
vertical and across the origin.

There are two ways to collect data. Either one can just create all the
possible boards and apply the AI to each one. This would obviously take an
incredible amount of time. The other way is to just simulate many games
between the AI and another opponent and record the moves it makes in those
games. I chose to use the second method.

The second step was to save all the data collected from each game into
a file, so it could be easily read out by the computer and put back into a
HashMap. This is a relatively simple task that is completed by retrieving
the keyset from the HashMap, matching each key with its value and storing
these two strings one after the other in a text file. This makes loading all of
the data simple. The computer just reads in two lines from the file and it
has a key and value that goes with it.

The integral part of all this is to modify the forward-checker so that it
uses this data to its advantage. At every ply the AI checks the HashMap
to see if the current board is stored in the data. If it is not, it continues
traversing the tree until the next level where it checks the HashMap again.
If it does find that the board is a match, then it will do one of two things
depending on how deep into the tree of moves it is. A match found on the
first level uses the data and immediately returns the move associated with
the board. A match found later on is used to cut out a branch of the tree as
if it had already been sifted through and returns the evaluation associated
with the board.

As stated before, a combination of efficiency and skill could be increased
depending on how the data as used. Using the data to find the move chosen
on the first level and returning that move increases efficiency because it cuts
out time spent searching through the tree. On the other hand, using the
data’s evaluation data to traverse the tree allows the AI to, in a sense, search
even further than it would normally. This is because each piece of data is
derived from searching through a tree of moves five levels. It is important to
find a balance between these two options depending on the situation the AI
is in.

9



3.3 Testing and Analysis

The first way is to test it against human players. The second way will be to
test the AI against previous AI’s to see if it has improved or worsened after
changes have been made. Margins of victory (or loss) along with running
time will determine how well it is performing. Since making the AI better or
faster usually requires rather small yet clever changes in the code, it is very
easy to work on certain segments from week to week.

The only true way to test for bugs in this sort of AI is to play against it.
This is rather frustrating at times because one either has to play enough for
a specific situation to arise or recode the program so the situation comes up
on the start-up, which is most closely related to ”Structural and Functional”
testing. In rare instances I am able to use outputs in order to look for bugs,
for example, returning the evaluation of the move chosen and making sure
that this was indeed the best move to make.

Testing whether the Genetic Algorithm worked involved simply outputing
the splicing and making sure everything went smoothly. The more difficult
part is making sure that the resulting evaluation sets are truely better than
the ones before them. The only real ways to test this is to play against
them yourself and determine whether they are more difficult or by playing
many trials against a random opponent (an opponent who choose moves
randomly) and seeing how well it does on average. As it turned out, the
Genetic Algorithm found that the corners were the most heavily weighted
factor in determining who was winning in the game, which was expected.
What was not expected was how the amount of pieces a player has on a
board was weighted just slightly less than the corners. However, I found
through testing the AI that the corners still did not have enough influence
in the game because that it would routinely give up corner spaces to the
opponent. This motivated me to give the corner ratings a higher maximum
possibility than the other categories so it would be given more influence in
the games. This strategy quickly eliminated the problem.

The final iteration was difficult to actually test because the only way to do
so was to have human players play against it. However, after playing enough
times I found results that were oppisite of what I had expected. Instead of
having the Forward Checker becoming faster and more effective, it became
slower and not noticably more effective. Although the running time was not
signifcantly lengthened, it was lengthened which means that this method of
learning from its moves poses a disadvantage for the AI. The reason for the

10



increase in running time is most likely due to the use of HashMaps. While
the HashMap is generally a quick way to access your data, it becomes slow
when it is filled with hundreds of thousands pieces of data. Therefore, when
the AI was checking to see if a key was in it at every level, it was, usually,
returning nothing which indicates that this was just wasting time. This
leads to the second problem. A game of Othello has more than 332 possible
boards. Therefore, a lot of data needs to be collected if one expects the AI
to encounter a familiar board after the first couple of turns.

4 Conclusion

My purpose for this research project was to create a strong Othello Artifi-
cial Intelligence through the use of machine learning and to gain a deeper
understanding of machine learning. The use of the Minimax algorithm has
worked very well. It is able to search five moves deep with little to no de-
lay. However, I have discovered that the evaluation values chosen for the
Minimax algorithm is more important than how deep the alogorithm can
search. This is the main reason why so much time and effort was put into
using the Genetic Algorithm. After I had to run the program for extended
periods of time, a strong set of evaluation values was produced. Using the
Genetic Algorithm has been an interesting experiance. Knowing that all one
has to do is run the program and let the computer handle everything itself
with no input from the user is a different feeling. I believe that the Artificial
Intelligence that I have created up to this point is strong.

The learning part of the project was mostly a falure. It can be assumed
that when enough data is collected to cover a significant amount of the pos-
sibilities then this strategy would be useful. However, in this situation it
turned out that the AI would perform better when this information was
excluded from the Forward-Checker.

All in all I felt as if this project was a good experiance. I learned a lot
about different forms of Artificial Intelligence and I was able to create an
effective Othello AI.

11



5 Acknowledgements

I would like to thank Mr. Latimer for helping throughout my project by
providing literature and input. I would also like to thank Lynn Jepsen and
David Phillips for testing my program throughout the year.

References

[1] Hsiung, Sam, and James Matthews, ”An Introduction to Ge-
netic Algorithms.”, Generation 5. 31 Mar. 2000. 10 Jan. 2007
<http://www.generation5.org/content/2000/ga.asp>.This website
gives very concise description of how the Genetic Algorithm works. It
goes over the five basic steps involved for each iteration but does not
provide any examples. However, it was enough information for me to
be able to code the Genetic Algorithm myself and apply to my problem
of finding the most advantageous evaluatuion function.

[2] Marczyk,Adam. ”Genetic Algorithms and Evolutionary
Computation.”, The Talk Origins Archive. 23 April. 2004
<http://www.talkorigins.org/faqs/genalg/genalg.html>.This web-
site goes a little further into how the Genetic Algorithm works and
explains more of the intricacies of it.

[3] Moreland, Bruce. ”Alpha-Beta Search.”
Bruce Moreland. 4 Nov. 2002. 10 Jan. 2007
<http://www.seanet.com/ brucemo/topics/alphabeta.htm>. This
website provided all my information about the Alpha-Beta Pruning
method. The website was very good in explaining the process and
giving good examples. This information was then used in adding the
Alpha-Beta Pruning process to my Minimax algorithm in order to make
it run faster.

[4] Russell, Stuart, and Peter Norvig. ”Optimal Decisions in Games.”
Artificial Intelligence: A Modern Approach. Upper Saddle River, New
Jersey: Pearson Education, 2003. 163-166. This source explained how
the Minimax alogorithm functioned. I used this mostly throughout first
quarter to make the actual Artificial Intelligence function for my pro-
gram, which, in conjunction with an evaluation alogorithm, is able to
pick the best possible move based on a give othello board.

12



[5] Thomson, Elizabeth A. ”Teams Build Robots That Walk Like Humans.”
News Room. 2 Mar. 2005. Massachusetts Inst. of Technology. 23 Jan.
2007 <http://web.mit.edu/newsoffice/2005/robotoddler.html>.

13


