
A Domain-Specific Language for 
Interactive Fiction

Evan Silberman, TJHSST Computer Systems Lab, 2006-07

Abstract
A domain-specific language (DSL) is a 
programming language designed to be 
used for a specific and limited set of 
tasks. Using metaprogramming 
techniques, I designed a DSL hosted 
within Ruby for creating interactive 
fiction games. My goal was to create an 
intuitive and expressive language for 
creating IF games while hiding the 
details of implementation from the 
programmer.

Introduction
Metaprogramming is simply the 
technique of writing code that writes 
code. The Ruby programming 
language contains extensive built-in 
facilities for metaprogramming. Using 
these features, a programmer can 
pass responsibility for evaluating 
blocks of code to different receivers 
than the ones implicitly being used by 
the code and generate code for 
methods on the fly. I used these 
techniques in the creation of my DSL 
for IF game writing. By passing details 
of implementation to a backend, I was 
able to keep the syntax of the frontend 
code (which, being hosted, is all valid 
Ruby code) simple, intuitive, and 
terse. (Example 1)

#example 1
room :living do

name “Living room”
desc “This is not tom's favorite room”
exit :north, :fantasy

end

Methods
Several Ruby metaprogramming 
features simplified the 
implementation of the DSL. 
Instance_eval is a method which 
every Ruby Object has which takes 
a code block, then evaluates that 
code block as if the methods in it 
were instance methods of that 
object. This allows the syntax 
wherein details of a room are 
declared without the programmer 
knowing anything about the Room 
class. The method_missing 
method, which is called on an 
object when no instance method 
exists, allows the programmer to 
define arbitrary properties to be 
dealt with later for the rooms he 
creates.

Conclusion
Well, I obviously can't really 
conclude everything after only 
one quarter of work. So this'll be 
a status report instead. Room 
declarations and creature 
declarations are functional, and a 
rudimentary, though moderately 
enjoyable, proof-of-concept game 
has been written in the language 
and successfully played. One-
layer conversations with other 
characters also work, and 
extending this functionality to 
more complex conversations is 
probably going to be a challenge.


