
A Domain-Specific Language for 
Interactive Fiction

Evan Silberman, TJHSST Computer Systems Lab, 2006-07

Abstract
A domain-specific language (DSL) is a 
programming language designed to be 
used for a specific and limited set of 
tasks. Using metaprogramming 
techniques, I designed IFAlpha, a DSL 
hosted within Ruby for creating 
interactive fiction games. My goal was 
to create an intuitive and expressive 
language for creating IF games while 
hiding the details of implementation 
from the programmer.

Introduction
Metaprogramming is simply the 
technique of writing code that writes 
code. The Ruby programming 
language contains extensive built-in 
facilities for metaprogramming. Using 
these features, a programmer can 
pass responsibility for evaluating 
blocks of code to different receivers 
than the ones implicitly being used by 
the code and generate code for 
methods on the fly. I used these 
techniques in the creation of IFAlpha. 
By passing details of implementation 
to a backend, I was able to keep the 
syntax of the frontend code (which, 
being hosted, is all valid Ruby code) 
simple, intuitive, and terse. (Example 
1)

#example 1
room :living do

name “Living room”
desc “This is not tom's favorite room”
exit :north, :fantasy

end

Methods
Several Ruby metaprogramming 
features simplified the 
implementation of the DSL. 
Instance_eval is a method which 
every Ruby Object has which takes 
a code block, then evaluates that 
code block as if the methods in it 
were instance methods of that 
object. This allows the syntax 
wherein details of a room are 
declared without the programmer 
knowing anything about the Room 
class. The method_missing 
method, which is called on an 
object when no instance method 
exists, allows the programmer to 
define arbitrary properties to be 
dealt with later for the rooms he 
creates.

Ease of Use
The principle design goal of the 
language is ease of use. My intent 
is to make the language easy for 
non-programmers to understand 
and use. Game writers should not 
have to be programming experts 
spending long hours learning 
complex syntax to express simple 
relationships and objects for a 
game. The test of success for the 
IFAlpha project is not whether I 
create the most feature-ful system 
ever (I don't have the time or 
knowledge for that), but if the 
system I create is easy and 
intuitive to use.


