
A Domain-Specific Language for Interactive Fiction:
Handout

Evan Silberman

All Hallows’ Eve, 2006

1 Introduction

A domain-specific language (DSL) is a programming language designed to be used for a
specific and limited set of tasks. Compared to a general-purpose programming language
(GPL), a DSL has limited expressiveness, but is more expressive than a GPL in its domain.
I am designing a DSL hosted within Ruby for creating interactive fiction games. My goal is
to create an intuitive and expressive language for creating IF games while hiding the details
of implementation from the programmer.

2 The Language

What follows is an example room declaration in the DSL. This declaration is all valid
Ruby code, but details like the object model are hidden from the programmer. My gen-
eral paradigm for the language syntax is that the programmer declares rooms, creatures,
and objects using top-level methods and assigns properties using what appear to be data
fields, but are in reality instance methods of a Room class defined in the backend.

room :living do

name "Living room"

desc "This is not Tom’s favorite room"

tom "Tom is nowhere nearby"

exit :north, :fantasy

fiesta "Tom frowns on fiestas in the living room"

end

3 The Backend

The DSL isn’t parsed or compiled, and it’s not exactly interpreted either. It’s all valid Ruby
code. Using metaprogramming techniques, responsibility for dealing with methods is passed
from the game file to the “room” method to an instance of the Room class.

1

def room(name,&block)

newRoom = IFAlpha::Room.new

newRoom.instance_eval &block

IFAlpha::Room.rooms[name] = newRoom

newRoom

end

The magic in this method is in instance eval, which evaluates the code block passed to
“room” as if the methods in it were instance methods of the new instance of Room that is
created earlier.

One more example from the backend: exits. Obviously when the user declares exits from
the room, the rooms may not yet all exist, depending on the order things are in the game
file. So the backend creates a Proc, an object encapsulating a code block, which is evaluated
later, adding exits to every room once every room exists.

def exit(*args)

The rooms may not all be in the hash yet,

so we have to save this for later.

if args[0].class == Hash

h = args[0]

else

h = Hash[*args]

end

p = Proc.new do

for direction, room in h do

theRoom = @@rooms[room]

@exits[direction] = theRoom

end

end

@exitproc = p

end

2

