
My experience with automated testing for Rails

Evan Silberman

June 11, 2007

(In lieu of the 4th quarter iteration report, I suppose.)
Last summer, I began developing a Ruby on Rails-based quiz bowl tournament

statistics and organization suite I dubbed “Taft.” After several abortive attempts, I
finally managed to understand how to use Rails, but what I still didn’t understand
was testing. It seemed boring and pointless. I could just test my program in the
browser, right?

Well, as I went on, and read various articles in Rails blogs about testing, I realized
that knowing for sure that the components of my program were working correctly at
all times. So a few months ago, I hesitantly wrote my first test. And I realized how
inspiring it was when you didn’t just think that your program worked, but when the
computer tells you it knows your program works. Tests, simply put, ensure program
correctness, as long as the tests are written well. It’s an extremely helpful when after
every change, you can reassure yourself that you haven’t broken anything.

Testing for Ruby on Rails is managed by a Ruby testing library called Test::Unit.
The purpose of unit tests is to ensure that all of an object’s methods produce the
correct output or change the object’s state in the proper way. A test can consist
simply of a call to a method and an assertion that the return value is equal to what
we expect. Then, repeat so every method and line of code in the program is covered.
Rake, a Ruby build tool, allows all the tests for Taft to be run simultaneously and
any failures are immediately apparent.

Tests are great, but for the test suite to be truly useful, it must cover as much
of the code as possible. Currently, about 50% of the system is covered by the tests.
My goal is to eventually reach 90% coverage (I don’t know if I can manage 100%).
I analyze my code coverage using another testing tool called rcov. Rcov runs all
the tests for the project, then produces an HTML report showing the lines of code
for each file that were executed when the tests ran. This is incredibly useful when
trying to figure out what tests I need to write and whether my tests are testing useful
things.

1



Many people advocate a test-first, or behavior-driven, development process. In
other words, write a test, which will fail because you haven’t written the code yet.
Write just enough code so the test will pass, then write more tests and more code
iteratively until you’re satisfied with your program. Since I wrote a whole lot of code
before I started testing, I can’t really adopt this practice at this stage for Taft, but
I may try it in the future when starting new projects.

2


