
3D Graphics Module

Ramesh Srigiriraju
Computer Systems Lab 2006-07

March 28, 2007

Abstract

The purpose of this research project is to find a way to maximize
the speed of a 3D graphics program. To change the runtime speeds, I
used different methods to store the matrices used for graphics-related
operations (such as rotations, translations, etc.). The slowest version
of my program involved a matrix expression tree where all the points
were recalculated with each rotation and were stored as column vec-
tors. Calculating the points once at the beginning of the program
seemed to make no appreciable difference in speed, but storing them
as row vectors did. The change that seemed to make the biggest dif-
ference was to get rid of the matrix trees completely and hard-code
the rotation formulas.

1 Introduction

1.1 Scope of Study

The scope of this program is to allow the user to graph functions of two vari-
ables. The program uses homogeneous coordinates and matrices to perform
rotations on the graphs while viewing. The function and the bounds of the
viewing window are inputted by the user. In order to store the function, the
program creates a binary expression tree and substitute in values of the in-
dependent variables to determine the value of the function at various points.
I used this program to test the speeds of the various data storage methods.

Another area of my program involved a matrix editor, which I used to
test my matrix expression tree class. This editor allows the user to set the

1



size of a matrix and input data into the cells. After editing the matrix, the
user can then perform various operations on it, such as matrix multiplication,
Gauss-Jordan elimination, matrix inversion, etc.

After creating these two programs, I used them to test the data struc-
tures. The first data storage scheme that I used involved a matrix expression
tree. This data structure is similar to a binary expression tree, but it stores
matrices instead of numbers. The tree would be used to store the matrix
expressions needed to rotate my graphs, and it would be evaluated whenever
I needed to plot points. The original, unrotated points would be recalcu-
lated each time the viewing window updates itself to take into account any
changes in screen size. The original data points would also be stored as
column vectors.

My second data storage scheme was similar to the first one. However, the
points would be stored as row vectors instead of column vectors because of the
way Java stores arrays. My third data storage scheme involved calculating
the original data points only once at the beginning of the program. Other
than that, this storage scheme was similar to my second one. My final data
storage scheme involved hard-coding the rotation formulas instead of using
matrices. The original data would only be calculated once at the beginning.
Once the testing phase is finished, the programs that I wrote will be put
up on the TJ Intranet for others to use, so my program involves the use of
modular programming as well.

1.2 Purpose/Relevance

The purpose of this research project is to compare different data structures
in order to maximize the speed of a 3D graphics program. To do this, I first
had to create a binary expression tree class to store expressions. Then, I had
to expand this class so that it’d store matrix expressions. Next, I had to
create a class that allowed the user to perform matrix operations in order to
test my matrix expression tree. Finally, I had to create a class that graphed
functions of two variables in order to test my data storage schemes. This
research is important to others because it’s trying to find a way to optimize
the processes involved in 3D graphics.

2



2 Background

Previous projects concerning this area of research include The Investigation of
Graphics in the Processing Language by J. Trent, CityBlock Project: Multi-
perspective Panoramas of City Blocks by M. Levoy, and TJForge Iodine for
the modular programming component. The 3D graphics projects used rota-
tion matrices, such as the 2D matrix [[cos(a) -sin(a)] [sin(a) cos(a)]], to rotate
graphs by an angle a (Levoy, Trent). However, they didn’t seem to indicate
how these matrices were stored. Other sources specific to Java programming
suggested the use of the format xB instead of Ax for linear transformations,
where both the column vector and the matrix get transposed. The purpose of
this was to take advantage of the way arrays are stored in Java and to reduce
errors (Ameraal). Iodine used HTML to program in the modules. Possi-
ble state-of-the art programs could be MatLab or other computer algebra
systems or even the 3D-graphing feature of the TI-89.

One algorithm that was used in my program was infix traversal. My
binary expression trees consisted of a String and two other binary expression
trees. The String represented the operation that was being stored, while the
subtrees were the two operands. In my infix evaluation, the two subtrees
would be evaluated, and the results would be used as inputs to the specified
operation. In order to create the binary expression trees, I split up my Strings
in the reverse of my order of operations. They would be split up first based
on addition and subtraction, then by multiplication and division, then by
exponentiation, etc. That way, my order of operations would be preserved
when I evaluated the trees.

3 Development

3.1 Development Plan

My project uses the staged delivery development process, since I have a dif-
ferent plan for each quarter. Every quarter, I have a specific version in mind
that has specific functionality. For the first quarter, I planned to just imple-
ment a regular calculator module to make sure my infix evaluation algorithms
were functioning properly. These recursive algorithms would be used again
for my graphing calculator, since the equations would be read in and stored
in binary expression trees before graphing. During second quarter, I planned

3



to implement a matrix editing module since the 3D graphics component re-
quired the use of matrices. For third quarter, I planned to actually implement
my graphing module so that I could test the various data structures.

3.2 Testing Requirements

The implementation of the binary expression trees was pretty straightfor-
ward, so my first criteria for determining success involved the actual parsing
of Strings. I had to make sure that the listeners associated with the ”Enter”
button followed the correct order of operations and created binary expression
trees based on that order. To test the accuracy of my program, I used the
TI-83 evaluation algorithm as a standard. My second criteria was to make
sure the matrix editing panel and the matrix operations panel interacted
correctly so that matrices could be inputted without losing data. For the
graphing panel, I had to see whether the program could plot points accord-
ing to a right-handed set of coordinate axes and apply the relevant matrix
operations to rotate the graphs. My final test was to measure the amount of
lag that resulted for each data storage scheme and see which one resulted in
the shortest waiting time.

3.3 Research Theory and Design Criteria

To find out the quickest way to store data, I used four different data struc-
tures when graphing my functions. The first data storage scheme that I used
involved a matrix expression tree. The tree was used to store the matrix
expressions needed to rotate my graphs, and it was evaluated whenever I
needed to plot points. The original, unrotated points were recalculated each
time the viewing window updated itself to take into account any changes in
screen size. The original data points were to be stored as column vectors.
My second data storage scheme was similar to the first one. However, the
points were be stored as row vectors instead of column vectors. My third
data storage scheme involved calculating the original data points only once
at the beginning of the program and using row vectors. My final data stor-
age scheme involved hard-coding the rotation formulas and calculating the
original points only once.

In order to gather my data, I modified one of the listeners for my graph-
ing calculator so that whenever you pressed one of the ”Rotate” buttons, it
changes the viewing angles and re-rotates the graph 10,000,000 times. Each

4



time, it executes the method System.nanoTime() before and after repainting
the graphing window, since it is in the repaint() process that it performs
the viewing transformations. Then, it prints out the elapsed time to a text
file. After gathering data for each different data storage scheme, I ran an-
other program to analyze this data. This program ignored the first million
data points for each scheme, since the programs tended to run slower at the
beginning of the trial period and then reached a ”steady state” after multi-
ple iterations. The analyzer program calculated the average runtime for the
remaining 9,000,000 iterations and printed out the results. I decided to go
with 9,000,000 iterations to ”dilute” the effects of outliers on the averages.
All programs were run on a 1.2 gigahertz processor, with no other programs
running except for the NetBeans IDE v. 4.1. The version of Java used was
J2SE 1.5.

3.4 Runtime Process

During the runtime of my third quarter version, the user starts out with this
window:

Here, the user can input equations to graph and change the window bounds.
After pressing the ”Begin Graphing” button, a graph of the function is dis-
played. The ”Rotate” buttons allow the user to rotate the graph in the
specified directions.

5



4 Results, Conclusion, and Discussion

The purpose of this research project is to find a way to maximize the speed
of a 3D graphics program. To change the runtime speeds, I used different
methods to store the matrices used for graphics-related operations. This
research is important to others because it’s trying to find a way to optimize
the processes involved in 3D graphics. I consider my project to be a success
since I obtained enough to compare the performances of each data structure.

So far, I have managed to create a working binary expression trees class
that can handle logarithmic functions, exponential functions, trigonometric
operations, inverse trigonometric operations, and regular arithmetic opera-
tions. The trees for non-arithmetic operations only have one subtree since
they only take one argument. I created a class that parsed input Strings and
broke them up based on an order of operations that I determined. My ma-
trix editor also uses binary expression trees, except this time, the arguments
are matriceds instead of doubles. It can handle addition, subtraction, mul-
tiplication, and other operations such as matrix inversion and Gauss-Jordan
elimination. I also have a working graphing calculator that can store func-
tions in binary expression trees, apply the rotations that are necessary to
view the object, and display the data points on the screen.

The slowest version of my program involved a matrix expression tree
where all the points were recalculated with each rotation and were stored as
column vectors (Scheme 1). Each iteration, this scheme took 2685 nanosec-

6



onds to rotate a single graph. Storing the points as row vectors instead of
column vectors made a significant difference, since this scheme only took
2513 nanoseconds (Scheme 2). Calculating the points once at the beginning
of the program seemed to make no appreciable difference in speed, since the
runtime per iteration was 2592 nanoseconds (Scheme 3). The change that
seemed to make the biggest difference was to get rid of the matrix trees com-
pletely and hard-code the rotation formulas, since this scheme only took 2440
nanoseconds per iteration (Scheme 4). I will not include the data points that
were collected in this paper, since there are 40 million of them and they took
up a total of 240 megabytes.

However, there are anomalies in the data. Scheme 3 took longer than
Scheme 2, even though it performed fewer flops per iteration. A closer anal-
ysis of the data I collected revealed that the runtimes did not stay constant.
At the beginning, each program took over 10,000 nanoseconds per iteration
to run. After a few iterations, the runtime length would spike, and then it
would decrease to 9,000 nanoseconds. After running at 9,000 nanoseconds,
the runtime length would spike again and then plateau at an even lower
value. This process continued until the programs reached a steady-state. By
iteration number 20,000, the runtimes would alternate between 2235 ns and
2514 ns. An calculation of the mode data point confirmed this operation:
Schemes 1 and 2 had modes of 2514 ns, while Schemes 3 and 4 had modes of
2235 ns.

One possible explanation for the spike-and-plateau pattern involves the
use of memory. Every time I ran the repaint() method, my program left
data in the computer’s memory. As the Java Virtual Machine started to run
out of RAM, it would ”ask” the system for more, which explains the spikes.
This increase in RAM allocation allows the program to run faster, which
explains the plateaus. One possible solution to this problem would be to
run the garbage collector (System.gc()) every iteration so that the amount
of RAM usage stays constant. The preliminary data that I have managed
seems to confirm this fact, since the programs do not speed up when the
garbage collector is run.

The conclusion that I can draw is that the type of data structure being
used has a significant impact on the runtime efficiancy of the program. Al-
though the use of a binary search tree allows the user to write neater code, it
results in considerable lag when the program runs. The best way to store a
matrix is to hard-code the formulas. Areas for future research would involve
investigating the effects of the garbage collector. The repaint() method was

7



only meant to be executed once when a ”rotate” button was pressed, so the
end user would therefore be more interested in the behavior of the program
before more RAM is allocated.

References

[1] M. Levoy, “CityBlock Project: Multi-perspective Panoramas of City
Blocks,” 2006.

[2] J. Trent, “The Investigation of Graphics in the Processing Language,”
2006.

[3] L. Ameraal, Computer Graphics for Java Programmers, 1998.

8


