3D Graphics Module

Ramesh Srigiriraju

Abstract

- Project Areas: 3D Graphics, Modular design
- Purpose: to test data schemes for 3D rotatons
- Four different test cases for data storage
- Graphing calculator program to perform tests

Abstract

- Scheme 1: Matrix expression trees, recalculate each time, column vectors
- Scheme 2: Matrix expression trees, recalculate each time, row vectors
- Scheme 3: Matrix expression trees, row vectors
- Scheme 4: Hard-coded rotation formulas

Abstract

- PGM format used to measure whitespace
- Graph used: z=1/(x^2+y^2), θ=-.1, φ=π/4
- Scheme 1: plotted
- Scheme 2: triangles
- Scheme 3: Scheme 1+Scheme 2
- Scheme 4: gradients determine when to apply Schemes 1 & 2

Introduction

- Matrices used for rotations & stretches
- A=[[cos(a) -sin(a)]
- [sin(a) cos(a)]]
- Matrix above rotates points by an angle a
- Homogeneous coordinates: (x, y, z, 1) so that translations become linear

Introduction

- Current programs in this area:
- Maple
- MatLab
- Mathematica
- Graphing programs built-in to calculators

- Programs written in Java
- All programs run on 1.5 Ghz processor, 512 MB RAM
- No other processes running, except for IDE
- 10 million trials b/c of outliers
- First million trials ignored

- Garbage collector run each iteration to avoid memory leaks
- Number of trials reduced to 10,000
- Runtime length outputted to text files for all versions
- Separate program used to calculate means, modes

- Matrix editor module used to test matrix trees
- Calculator module used to test binary expression trees
- Graphing module used to test data storage scheme

- Z-Buffer algorithm: different schemes work for different graphs
- Success determined by magnitude of gradient
- Combination fails when |▼f|≈1

Results & Conclusion

- 40 million data points
- 240 MB of data collected
- Symmetric differences: too costly

Memory Leaks

- Scheme 1: 2685
- Scheme 2: 2513
- Scheme 3: 2592
- Scheme 4: 2440
- Steady-state reached after ~20K trials

				_ D X	
Z0=		sin(x+y)	sin(x+y)		
Z1=					
72=					
L3= 74_					
75=					
Z6=					
XMin=		-10.0			
XMax=		10.0	10.0		
XStep=		1.0			
YMin=		-10.0	-10.0		
YMax= VStep=		10.0			
7Min=		-10.0			
ZMax=		10.0			
pi	(e	log(
*	1	+	-	٨	
1	2	3	4	sin(
5	б	7	8	cos(
9	0		arctan(tan(
arcsin(arccos(X	У	Up	
Down	Clear	Del			
		Begin Graphing			

Garbage Collect

- Scheme 1: 42558
- Scheme 2: 45343
- Scheme 3: 44679
- Scheme 4: 50457
- Absence of "spikeand-plateau" pattern

Z-Buffering

- Scheme 1: 73%
- Scheme 2: 89%
- Scheme 3: 66%
- Scheme 4: 67%
- Gradients: not significantly compromise

