
NetChat Modular Communications System
TJHSST Computer Systems Lab 2006-2007

Barnett Trzcinski
Steven Fuqua
Andy Street

January 24, 2007

Abstract

NetChat revolutionizes the mundane system of communications
of data, be they simple chat messages and e-mail to the transfer of
mission-critical data. A modular framework ensures that nearly every
type of communication can be tunneled through the same network,
the same systems, and the same software. Not only does this sim-
plify the experience for the end-user, but it accelerates development
of new methods of communication and enables innovators to deliver
these methods to the public faster than ever before.

Keywords: Network, Module, Modular, Communications, Proto-
col, Server-Client

1 Introduction

Ever since the advent of the Internet, countless innovations have been made
in the area of communications. As new ideas are constantly researched and
explored, people discover new ways to communicate that they have never seen
before. Unfortunately, as these ideas are disseminated, their organization
becomes looser and looser. For example, mail, web pages, and news are all
communicated using entirely different protocols, and in some cases (as with
instant messaging) there are several competing protocols, each improving on
the last’s inefficiencies and issues.

1

Although this was necessary in the past when global socket communi-
cation via TCP/IP was a new idea, with more exploration into the encap-
sulation of a variety of data these numerous protocols become unnecessary.
In particular, all of the aforementioned communications utilities (mail, web
pages, news, and instant messaging) all primarily involve the exchanging of
simple data (text, images, files), but in a different manner. In essence, lots of
debugging effort goes into improving and working on each of these separate
protocols, when in the end they all accomplish the same end result. This is a
waste of developers’ time as well as users’ patience, as many times arbitrary
incompatibilities can surface through testing and simple end-user interaction
with the services.

Rather than continue to develop separate protocols, there is a simpler
solution. With the coming of Extensible Markup Language, or XML, the
ability to represent diverse forms of data within one standard and using one
parser is finally here. So far, the primary use of XML has been in the rep-
resentation of stored, static data: configuration files, some web documents,
and definitions. Other attempts to create unified communication protocols
have resulted in cluttered definitions and unexpandable efforts for future uses
[1]. Our aim is to create a new higher-level protocol, the NetChat Protocol
(NCP), which uses XML as a base to represent numerous communications
protocols. We are not trying to integrate diverse protocols into one system,
as through middleware [2]; rather, we will re-implement existing communi-
cation systems to run through this same protocol, using rapid development
techniques. Through this system, despite the different real applications of
the data, it can all be transferred the same way, via the same routing, server
network, and client.

2 Background

This project should not be confused with simple integration techniques.
Large projects (such as AOL) and some small projects (such as web page
portals) have tried to integrate diverse services such as mail, web, and news,
and consolidate them into one interface. The primary problem is however left
unresolved in these systems: the underlying communication for each service
is quite different, and separate effort is required to maintain each function.
NCP, on the other hand, is able to unify these forms of communication, thus
simplfying the entire system and making the integrated approach normal

2

functionality, not a special form of client.

3 Base Modular Framework

Before any meaningful work on end functionality could be achieved, the ba-
sic framework from which the functionality would later derive needed to be
developed first. This involved defining a new standard for message passing
using XML, called the NetChat Protocol (NCP), which handles all commu-
nication between server and client.

3.1 Defining NCP

Using the Trac system implemented at netchat.tjhsst.edu, we were able to
coordinate our efforts in developing this simple yet highly effective protocol
for generic communication of data. Every message...

3.2 Server Modules

The server is written in the highly dynamic Ruby language, which makes
creating the modular framework for specific communications applications
relatively easy. All that was needed was to define a generic base module,
which utilizes the core framework, and create the documentation that users
can use to write their own modules. Appendix A-1 shows the NCMBase
module’s parse method, exposing the reflection and dynamic code there in
interpreting messages.

3

Essentially, the primary method of defining the behavior of the module
is in writing several methods, whose names correspond to the type attribute
in the header of each message. Each method is passed the client identifier
which sent the message, the module-specific header, and the content of the
message (if any). For example, to respond to a message type hello, the
method msg hello is implemented in the server module. How these methods
are called is hidden from the module writer behind the scenes; at most, the
writer can add a few pre-processing commands to the overall parse method
which is responsible for using reflection to call the message methods before
calling super and continuing the old method. Appendix A-2 shows how
NCMChat defines the response to a particular type of message as well as a
pre-authorization line added to the parse method.

3.3 Client Modules

3.3.1 Graphical: Java

NCController is the main backbone for the J-Client framework in that it
not only houses all the server commands and maps of loaded and unloaded
modules, but also routes the majority of client traffic coming from the socket.
Incoming messages, after being parsed by the NCXMLParser into a NCXML-
Data object, are then sent to be handled by the Controller, which ultimately
decides what to do with the message. If a message is a module message,
the Controller will find the module in the map of loaded modules, and route
it to that module. If it is a server message, the Controller deals with it
right there, using reflections to call the appropriate method for the mes-
sage type NCAbstractModule is the class that all user created modules must
implement. The AbstractModule class handles all message routing and re-
flection, allowing users to just implement a method with the name mod-
uleCommand [Module Message Command Type] and know that the method
will be called and passed a content tree whenever a message with that module
message command type is received.

Implementing subclasses must implement:

1. A constructor that is passed an NCController

2. The cleanUp() method, called when the module is being unloaded

4

3. The getName() method, which returns the generic name of the module
(i.e. for NCLoginModule, the String ”login”, or whatever is defined in
etc/modules.conf)

4. The getProtocolVersion() method the returns the NetChat Protocol
version number the module is using (currently 0.1a)

5. The getVersion() method that returns the version number of that par-
ticular module (used for versioning control and automatic updates.)

3.3.2 Console: Python

The console client is written in the Python scripting language, which allows
for ease of expansion and flexibility of coding. Once a basic system for
creating and loading modules was established, it became simple to create
and load new ones.

Upon receiving a Module Message from the server, the console client will
begin analyzing the message itself. Once determining the appropriate module
(for example, ”login”), the parser will delve deeper and extract the specific
type of login-related message (”authorize login”). At this point, Python
reflection is used to probe the Login Module class for a function called ”au-
thorize login”, which is called and passed the content of the message, which
it can then parse independently. To define a new Module, one must only
create a file ”module name.py” in the appropriate directory, add the file to
the configuration script as a default module. To allow for the module to load
appropriately, a class within the file must exist that extends Module and has

5

appropriate message hooks as specific by the NetChat Protocol. After the
module is finished parsing content in its own unique manner, it is free to
send response data to the server or to modify the client’s internal state.

4 Results and Discussion

The primary purpose has been accomplished. However, some changes should
be made to make the product viable for widespread distribution.

First of all, the server right now is written in Ruby, a highly dynamic
interpreted language. Although its performance is quite good, writing a
streamlined, multithreaded server in C would vastly improve performance
with large amounts of clients. Although some of the programmatic con-
cepts would have to change (for example, some of the flexibility accomplished
through reflection), the functionality overall could remain intact quite well
due to the high availability of XML parsers and required technology through
C.

The Python client, though powerful, is currently unsuitable for use as a
release client. It was originally created to be a testing bed for new features,
but the focus has since shifted as a comparison between coding paradigms:
Java versus Python, GUI versus text. Experience thus far has shown that
implementations of modularity and interface are remarkably similar between
the two clients, though due to the inherent difference in interface, some func-
tional differences exist. The nature of the curses interface library makes
it difficult to create a perfect client, and additional emphasis needs to be
placed on ease of use (for example, tab completion of usernames has been
implemented).

5 Appendix A: Server Code Samples

5.0.3 Code Listing 1: NCMBase

[NCMBase.rb]

...

def parse (client, header, content)

\$log.debug "#{@name} instance has received data" unless \$log.nil?

6

default behavior, route to a reflected method based on message type

type = header.elements[’properties’].attributes[’type’]

response = self.__send__("msg_#{type}".to_sym, client, header, content)

unless response.nil?

self.communicator.send_message client, response[:header], response[:content]

end

end

...

5.0.4 Code Listing 2: NCMChat

[NCMChat.rb]

...

Handles the type ’backlog_request’.

* Every backlog message is sent back to the client, sorted in the order

they were received, and cleared from the database.

* An empty <content/> section is sent back if there are no backlogged messages.

def msg_backlog_request (client, header, content)

m = make_skeleton_message

response_header,response_content = m[:header], m[:content]

response_properties = response_header.elements[’properties’]

response_properties.attributes[’type’] = ’backlog’

username = self.moduleaccessor.access(’login’).get_username client

q = @mysql.query("SELECT * FROM chat_backlog WHERE destination=

’#{Mysql.quote(username)}’ ORDER BY sent ASC")

q.each_hash do |row|

m = REXML::Element.new ’message’

m.attributes[’src’] = row[’source’]

m.attributes[’sent’] = row[’sent’]

m.text = row[’message’]

response_content.add m

end

q.free

@mysql.query("DELETE FROM chat_backlog WHERE

destination=’#{Mysql.quote(username)}’")

7

return {:header => response_header, :content => response_content}

end

Partially overriden to force an authentication check before processing _any_ message.

The original functionality is kept assuming that check succeeds.

def parse (client, header, content)

return nil unless checkauth(client) # prevents any nefarious message

handling if unauthorized

proceed with base functionality

super(client, header, content)

end

...

References

[1] S. A. Moore, “A Communication Framework for Applications”, Proceed-
ings of the 28th Hawaii International Conference on System Sciences,
pp. 330-341, 1995.

[2] S. A. Gutierrez-Nolasco and N. Venkatasubramanian, “A Compos-
able Reflective Communication Framework”, Proceedings of IFIP/ACM
Workshop on Reflective Middleware 2000, 2000.

[3] DJ Adams, “Programming Jabber: Extending XML Messaging”,
O’Reilly & Associates, 2002.

[4] M. E. Fayad and D. C. Schmidt, “Object-Oriented Application Frame-
works”, Communications of the ACM 10, Vol. 40, October 1997.

[5] A. Denis, C. Pérez, and Thierry Priol, “PadicoTM: an open integra-
tion framework for communication middleware and runtimes”, Future
Generation Computer Systems 19, pp. 575-585, 2003.

8

