
NetChat Modular Communications System
TJHSST Computer Systems Lab 2006-2007

Barnett Trzcinski
Steven Fuqua
Andy Street

June 13, 2007

Abstract

NetChat reinvents and redefines the traditional system of commu-
nications of data over networks, be they simple chat messages and
e-mail to the transfer of mission-critical data. A modular framework
ensures that nearly every type of communication can be tunneled
through the same network, the same systems, and the same software.
Not only does this simplify the experience for the end-user, but it ac-
celerates development of new methods of communication and enables
innovators to deliver these methods to the public faster than prior
methods. System administration and security is helped as only one
encrypted tunnel must be tracked.

1 Introduction

Ever since the advent of the Internet, countless innovations have been made
in the area of communications. As new ideas are constantly researched and
explored, people discover new ways to communicate that they have never seen
before. Unfortunately, as these ideas are disseminated, their organization
becomes looser and looser. For example, mail, web pages, and news are all
communicated using entirely different protocols, and in some cases (as with
instant messaging) there are several competing protocols, each improving on
the last’s inefficiencies and issues.

1

Although this was necessary in the past when global socket communi-
cation via TCP/IP was a new idea, with more exploration into the encap-
sulation of a variety of data these numerous protocols become unnecessary.
In particular, all of the aforementioned communications utilities (mail, web
pages, news, and instant messaging) primarily involve the exchanging of sim-
ple data (text, images, files), but in different ways. In essence, lots of de-
bugging effort goes into improving and working on each of these separate
protocols, when in the end they all accomplish the same end result. This is a
waste of developers’ time as well as users’ patience, as many times arbitrary
incompatibilities can surface through testing and simple end-user interaction
with the services.

Most solutions to this problem are researched from the end-user perspec-
tive. Middleware has been created that ties services together at a front-end
level so that users can deal with one software application, interacting with
them all through one interface. However, this does not solve the problem of
using multiple methods of communication, many times with multiple server
applications driving them, causing further disparity and a disorganization
leading to security flaws and administration challenges.

Rather than continue to develop separate protocols, there is a simpler
solution. With the coming of Extensible Markup Language, or XML, the
ability to represent diverse forms of data within one standard and using one
parser is finally here. So far, the primary use of XML has been in the rep-
resentation of stored, static data: configuration files, some web documents,
and definitions. Other attempts to create unified communication protocols
have resulted in cluttered definitions and unexpandable efforts for future uses
[1]. Our aim is to create a new higher-level protocol, the NetChat Protocol
(NCP), which uses XML as a base to represent numerous communications
protocols. We are not trying to integrate diverse protocols into one system,
as through middleware [2]; rather, we will re-implement existing communi-
cation systems to run through this one protocol, using rapid development
techniques. Through this system, despite the different real applications of
the data, it can all be transferred the same way, via the same routing, server
network, and client.

2

2 Background

This project should not be confused with simple integration techniques.
Large projects (such as AOL) and some small projects (such as web page
portals) have tried to integrate diverse services such as mail, web, and news,
and consolidate them into one interface. The primary problem is, however,
left unresolved in these systems: the underlying communication for each
service is quite different, and separate effort is required to maintain each
function. NCP, on the other hand, is able to unify these forms of communi-
cation, thus simplfying the entire system and making the integrated approach
normal functionality, not a special form of client.

3 Base Modular Framework

Before any meaningful work on end functionality could be achieved, the ba-
sic framework from which the functionality would later derive needed to be
developed first. This involved defining a new standard for message passing
using XML, called the NetChat Protocol, which handles all communication
between server and client.

3.1 Defining NCP

Using the Trac system implemented at netchat.tjhsst.edu, we were able to
coordinate our efforts in developing this simple yet highly effective protocol
for generic communication of data. Every message is composed of several
XML tags. The root ‘message’ tag encompasses two others: ‘header’ and
‘content’. The ‘header’ tag contains a ‘global’ tag, which might contain in-
formation such as the specific properties that each NetChat message specifies
individually. Following the global information comes data specific to the type
of message, such as tags defining the specifics of which module to which infor-
mation should be routed. Finally, the content tag can contain anything that
a developer wishes to specify in his parser: there is no standard for content,
and it is available for any data in any format that the developer specifies.

The server and clients communicate using these messages, divided into
two supercategories known as ‘server messages’ and ‘module messages’. Server
messages deal with private communication between client and server, such
as handshakes and stay-alive communication. Module messages are signif-

3

icantly more complicated, and are further subdivided based on modifying
specific attributes of a given module. For example, the chat module may re-
ceive module messages ranging from retrieving a buddy list to an alert that
a message could not be sent.

3.2 Server Modules

The server is written in the highly dynamic Ruby language, which makes
creating the modular framework for specific communications applications rel-
atively easy. All that was needed was to define a generic base module, which
utilizes the core framework, and create the documentation that developers
can use to write their own modules. Appendix A-1 shows the NCMBase
module’s parse method, exposing the reflection and dynamic code there in
interpreting messages.

Essentially, the primary method of defining the behavior of the module is
in writing several methods, whose names correspond to the type attribute
in the header of each message. Each method is passed the client identi-
fier which sent the message, the module-specific header, and the content of
the message (if any). For example, to respond to a message type hello,
the method msg hello is implemented in the server module. How these
methods are called is hidden from the module writer behind the scenes; at
most, the writer can add a few pre-processing commands to the overall parse
method which is responsible for using reflection to call the message methods
before calling super and continuing the old method. Appendix A-2 shows

4

how NCMChat defines the response to a particular type of message as well
as a pre-authorization line added to the parse method.

3.3 Client Modules

3.3.1 Graphical: Java

The J-Client, written in Java, is the main distribution client for NetChat. It
provides a graphical interface written with the Eclipse Foundation’s Standard
Widget Toolkit (SWT), a portable widget toolkit that uses native backend
code to render widgets for Java supported operating systems, and JFace, a
data binding UI model framework, both of which allow this client to run on
a variety of graphically-enabled systems.

The J-Client uses a static parsing system to turn incoming NCP into
easily accessible and organized data objects. After getting passed a message
from the socket by the Connector class, the XMLParser uses callbacks to

5

construct an XMLData object, a standardized, tiered dictionary structure
that is then passed to the Controller for routing. The Controller uses the
routing header stored in the Data object to determine the type of message
(module or server) and the module it should be routed to if any. If it is
a server message, it is dealt with immediately, calling the proper method
according to the data and passing a Tree version of the content tree. Other-
wise, as a module message, it is passed to the correct module which handles
it accordingly.

The main modular utility of the J-Client is the java.lang.reflect pack-
age, Java’s implementation of reflections. Reflections are used to call server
and module messages based on incoming NCP, as well as to dynamically
load modules. Reflections are used to access fields, call methods and even
dynamically instantiate Objects based on Strings. Once a message has been
routed to the correct location, i.e. the correct module, the handling method
will look at the message type attribute of the Data object, append an iden-
tifying String to it, and then use the reflections package to call the method
by that name, passing a content tree. Reflections are also used to create and
load modules: once a module is authorized, the Controller will look up the
corresponding class name and dynamically create an instance of the class.
See Appendix B for code samples.

3.3.2 Console: Python

The console client is written in the Python scripting language, which allows
for ease of expansion and flexibility of coding. Once a basic system for cre-
ating and loading modules was established, it became simple to create and
load new ones.

6

Upon receiving a Module Message from the server, the console client will
begin analyzing the message itself. Once determining the appropriate mod-
ule (for example, “login”), the parser will delve deeper and extract the spe-
cific type of login-related message (“accept login”). At this point, Python
reflection is used to probe the Login Module class for a function called “ac-
cept login”, which is called and passed the content of the message, which it
can then parse independently. The code for this is shown in Appendix C-1.
To define a new Module, one must only create a file “module name.py” in
the appropriate directory, add the file to the configuration script as a default
module. To allow for the module to load appropriately, a class within the
file must exist that extends Module and has appropriate message hooks as
specified by the NetChat Protocol. After the module is finished parsing con-
tent in its own unique manner, it is free to send response data to the server
or to modify the client’s internal state. The basic Module class is located in
its entirety in Appendix C-2, with the Module parser in Appendix C-3.

4 Results and Discussion

The primary purpose has been accomplished. However, some changes should
be made to make the product viable for widespread distribution.

First of all, the server right now is written in Ruby, a highly dynamic
interpreted language. Although its performance is quite good, writing a
streamlined, multithreaded server in C would vastly improve performance

7

with large amounts of clients. Although some of the programmatic con-
cepts would have to change (for example, some of the flexibility accomplished
through reflection), the functionality overall could remain intact quite well
due to the high availability of XML parsers and required technology through
C.

The Python client is not quite ready to be used as a release client. Due
to its original intention of being a testing bed for new features, only recently
has work commenced on establishing a flexible user interface through the
curses terminal library. While sweeping progress is being made in developing
the text-oriented Python client into a easily usable communications client,
work remains to be done. It does, however, remain powerful in testing new
features, as the simple interface and lightweight design aid in implementing
innovative code as quickly and efficiently as possible.

5 Appendix A: Server Code Samples

5.1 Code Listing 1: NCMBase

[NCMBase.rb]

...

def parse (client, header, content)

safeheader = header.deep_clone

safecontent = content.deep_clone

$log.debug "#{@name} instance has received data" unless $log.nil?

default behavior, route to a reflected method based on message type

type = header.elements[’properties’].attributes[’type’]

response = self.__send__("msg_#{type}".to_sym, client, safeheader, _

safecontent)

unless response.nil? or not response.is_a? Hash

responseheader = response[:header].deep_clone

responsecontent = response[:content].deep_clone

self.communicator.send_message client, responseheader, _

responsecontent

end

8

end

...

5.2 Code Listing 2: NCMChat

[NCMChat.rb]

...

Handles the type ’backlog_request’.

* Every backlog message is sent back to the client, sorted in the order

they were received, and cleared from the database.

* An empty <content/> section is sent back if there are no backlogged

messages.

def msg_backlog_request (client, header, content)

m = make_skeleton_message

response_header,response_content = m[:header], m[:content]

response_properties = response_header.elements[’properties’]

response_properties.attributes[’type’] = ’backlog’

username = self.moduleaccessor.access(’login’).get_username client

q = @mysql.query("SELECT * FROM chat_backlog WHERE destination= _

’#{Mysql.quote(username)}’ ORDER BY sent ASC")

q.each_hash do |row|

m = REXML::Element.new ’message’

m.attributes[’src’] = row[’source’]

m.attributes[’sent’] = row[’sent’]

m.text = row[’message’]

response_content.add m

end

q.free

@mysql.query("DELETE FROM chat_backlog WHERE _

destination=’#{Mysql.quote(username)}’")

return {:header => response_header, :content => response_content}

end

Partially overriden to force an authentication check before

9

processing _any_ message.

The original functionality is kept assuming that check succeeds.

def parse (client, header, content)

return nil unless checkauth(client) # prevents any nefarious message

handling if unauthorized

proceed with base functionality

super(client, header, content)

end

...

6 Appendix B: Java Client Code Samples

6.1 Code Listing 1: Controller Method Reflections

[netchat.system.NCController.java]

...

/**

* Routes an XML message to be handled by wither a module or a client.

*/

public void handleXMLData(NCXMLData d)

{

HashMap data = d.h;

String type = ((String)(data.get("type"))).toLowerCase();

Debug.println("Handling XML message...", 2);

if(type.equals("modulemessage"))

{

NCAbstractModule m;

String name;

if((m = modules.get((name = ((HashMap<String,String>) _

(data.get("properties"))).get("name")))) != null)

{

Debug.println("Handling " + type + " for module " + _

name + "...", 2);

10

m.handle(d);

}

else

Debug.println("Module " + name + " is not loaded.", 0);

}

else if(type.equals("servermessage"))

{

String msgType = ((HashMap<String,String>) _

(data.get("properties"))).get("type").toLowerCase();

Debug.println("Handling " + type + " " + msgType, 2);

try

{

String method = "serverCommand_" + msgType;

Method servMethod = NCController.class.getMethod(method, _

new Class[] {NCXMLElement.class});

servMethod.invoke(this, new Object[] {d.getContent()});

}

catch (Exception e) { ... }

}

}

6.2 Code Listing 2: Controller Module Loading

[netchat.system.NCController.java]

...

/**

* Called upon receiving the server message ’authorize_module,’

* uses reflections to create an instance of the module and loads it.

*/

//Called upon receiving "authorize_module"

public void serverCommand_authorize_module(NCXMLElement content)

{

String modName = (String)(content.getElement("name") _

11

.getSubObjects().get(0));

if(modules.get(modName) != null)

{

Debug.println("Module " + modName + " already loaded, _

aborting...", 0);

return;

}

boolean foundMod = false;

for(int i = 0; i < modulesAwaitingAuth.size(); i++)

if(modName.equals(modulesAwaitingAuth.get(i)))

{

foundMod = true;

modulesAwaitingAuth.remove(i);

break;

}

if(!foundMod)

{

Debug.println("ERROR: Module " + modName + " not awaiting _

authorization! Aborting...", 0);

return;

}

Class modClass = moduleClassnameMap.get(modName);

if(modClass == null)

{

Debug.println("ERROR: Module " + modName + " is not defined! _

Aborting...", 0);

return;

}

Debug.println("Creating instance of " + modClass + "...", 2);

try

{

Class cont = Class.forName("netchat.system.NCController");

12

Constructor c = modClass.getConstructor(new Class[] {cont});

NCAbstractModule mod = (NCAbstractModule) _

(c.newInstance(new Object[] {this}));

Debug.println("Loading module " + modName + "...", 2);

loadModule(mod);

}

catch (Exception e) { ... }

}

7 Appendix C: Python Client Code Samples

7.1 Code Listing 1: Login.accept login

[netclient.modules.login.py]

...

def accept_login(self, content):

self.logger.log(’Login accepted.’)

self.online = True

etp = ETreeParser(content)

etp.require_tag(’username’)

self.username = etp.get(’username’).text

mmanager.queue_modules(cmanager[’config’].find(’modules’, _

’default_modules’) + cmanager[’config’] _

.find(’sets’, ’default_sets’))

cmanager[’screen’].tabs[cmanager[’screen’].top_tab] _

.set_dialog(’parser’)

...

7.2 Code Listing 2: Module

[netclient.extensibles.py]

13

...

class Module(Component):

"""

A Module used by the netclient.mmanager.ModuleManager.

"""

def __init__(self):

self.opened = False

def open(self):

self.opened = True

def close(self):

self.opened = False

def parse_content(self, cont, typ):

"""

Given a Module command and the content of an NCP message,

the Module will react in a specified manner.

"""

return getattr(self, typ)(cont)

def get_tabbed_list(self):

"""

Called by the curses screen when ’tab’ is hit, such that each

module can implement it differently.

"""

return []

...

7.3 Code Listing 3: ModuleManager.load module

[netclient.mmanager.py]

14

...

def load_module(self, name, q=False):

d = self.queue if q else self.modules

if name in d:

return True

module = dynamicLoad(self.path, name)

if module is not None:

reload(module)

mclass = getattr(module, module.moduleclass, None)

if not issubclass(mclass, Module):

raise ModuleError, ’Modules must extend Module.’

minstance = mclass()

version = getattr(module, ’version’, None)

if not isinstance(version, str):

raise ModuleError, ’Module %s does not have a valid _

version.’ % name

self.add_module(name, minstance, version, q)

return True

else:

return False

...

References

[1] S. A. Moore, “A Communication Framework for Applications”, Proceed-
ings of the 28th Hawaii International Conference on System Sciences,
pp. 330-341, 1995.

[2] S. A. Gutierrez-Nolasco and N. Venkatasubramanian, “A Compos-
able Reflective Communication Framework”, Proceedings of IFIP/ACM
Workshop on Reflective Middleware 2000, 2000.

[3] DJ Adams, “Programming Jabber: Extending XML Messaging”,
O’Reilly & Associates, 2002.

[4] M. E. Fayad and D. C. Schmidt, “Object-Oriented Application Frame-
works”, Communications of the ACM 10, Vol. 40, October 1997.

15

[5] A. Denis, C. Pérez, and Thierry Priol, “PadicoTM: an open integra-
tion framework for communication middleware and runtimes”, Future
Generation Computer Systems 19, pp. 575-585, 2003.

16

