
TJHSST Computer Systems Lab Senior
Research Project

French/English Translation
2006-2007

Sharon Ulery

January 23, 2007

Abstract

This project uses computational linguistics to serve students of
French or English as a second language as well as those who know
only one of these languages. The program will translate French to
English and English to French well enough to be understandable to
someone who knows only the output language. Even a less than per-
fect translation is useful for surfing the web, reading texts in a foreign
language, and communication with someone from another country. It
can also be used for students to check their writing by translating back
to their native tongue. They can check mechanics and make sure the
writing is comprehensible by checking these areas of the translation.

Keywords: computational linguistics, computer translation

1 Introduction - Elaboration on the problem

statement, purpose, and project scope

1.1 Scope of Study

Starting with a word-for-word translation from French to English and vice
versa, I will hard code grammar rules into the program so that it correctly

1



translates increasingly complex grammar structures. This project can change
in size as needed throughout the year. At a minimum, the program should be
able to deal with ”subject verb object” type sentences with a wide vocabulary
range in all tenses. At a maximum, the program will be able to translate
all grammatically correct, non-idiomatic sentences in both languages with
correct agreement of number and gender and context-specific translation of
words with multiple definitions.

2 Background and review of current litera-

ture and research

Most current in this area is far above the introductory level of this re-
search project. I read Foundations of Statistical Natural Language Process-
ing: Chapter 1 by Manning and Schutze. In this work, Manning and Schutze
are considering the problem of having a computer ”understand” natural lan-
guage. They believe that language cannot be divided into ”grammatical”
and ”ungrammatical” statements; rather there are more and less commonly
used structures. They use a method such that the program learns the parts
of speech of words and common syntactical structures by training it on a
large body of input text from a wide variety of fields. Obviously, their meth-
ods do not produce perfect results, but this more modern approach is much
more robust than the older approach of hardwiring all knowledge into the
program at the beginning. It can be made to expand much more easily if
the software grows by reading more text than if the programmers must write
further grammar rules directly into the code. In fact, most current com-
puter translation uses this type of statistical technique. Unfortunately, this
approach is too sophisticated to learn and implement in a year-long project.

3 Development Pt. 1

The project will be considered successful if the output creates comprehensible
output in the corresponding language from grammatically correct, sensical
input.

I’m writing this program with the assumption that input will be about
one to three sentences in length. It is then necessary to create output quickly
enought that the user doesn’t get impatient even if (s)he has many sentences

2



to input in succession. It also makes the job of translating harder, because
there is little context with which to determine the meaning of the input. I
used Java and the bilingual Hansard corpus, a set of parliamentary proceed-
ings in both French and English from Canada. (Author’s Note: I have not
yet, but I probably will use this corpus.)

I used the Evolutionary Prototyping model for development. This means
that I developed the system concept as I moved through the project. I chose
this model because it is especially useful when requirements may change
throughout the project and when it’s not clear what the optimal architecture
or algorithms to use are. I then assessed the project and chose to make
changes when I saw results of tests or learned more about traditional methods
in the field through my research.

I tested this program using the tried and true ”eyeball it” method. I used
specific structural testing to make sure that each new algorithm or increase
in the sophistication of an algorithm worked the way I expected it to. I
used functional testing to check that each ”type” of sentence I could think of
worked the way I expected it to. For example, a subject-verb-object sentence
should translate using the subject to determine the conjugation of the verb.
At the end of the project, I will ask a number of possible users to try it out
using any sentences they can think of to input. The more grammatical and
closer to literal the translation is, the better the code.

This project consists of two classes: Word and Driver. Word stores infor-
mation about each wordtoken, including its content, stem, language, gender
(if applicable), number (if applicable), verb type (if applicable), and part of
speech. It includes methods to ”get” and ”set” each of these fields as well
as methods to discover some of these attributes either from the dictionary or
from the context of the word in the input phrase. The Driver class actually
runs the program. It reads in the dictionaries, parses the input String, and
calls all applicable methods of the Word class (including determineContent(),
determineStem(), determineLang(), etc.).

See attached for visuals.

3


