TJHSST Senior Research Project
End-to-End Publication Using the Bittorrent
P2P Filesharing Protocol
2006-2007

Andrew Wang
June 12, 2007

Abstract

Bittorrent is a promising peer-to-peer network that always allows
for fast download speeds despite the number of peers downloading the
file. Currently, there exist tools to make .torrent files, tools to ”track”
the peers downloading the file, tools to host .torrent files, and tools
to initially upload the file. This project aims to unify this process
by making an end-to-end software suite that simplifies the process of
publishing a file on the Bittorrent network for download. The key to
this will be automating and streamlining the process from the per-
spective of the user. It will involve a complete implementation of the
Bittorrent protocol, including encoding torrent files, peer-to-tracker
and peer-to-peer communication, and a greater understanding of the
benefits and detriments of the Bittorrent protocol.

Keywords: Bittorrent, Peer-to-peer, Linux, Publishing, Down-
load, Tracker

1 Introduction

1.1 Rationale

The scope of the project is broad, because it aims to be a complete solution
to publishing files using Bittorrent. It will have to handle all aspects of the

Bittorrent protocol, from processing the file to make the .torrent metadata
file to hosting and tracking the .torrent file and possibly a download client.

A new way of publishing using Bittorrent is important because the cur-
rent system of publishing is much more complicated and is inaccessible to
the normal computer user. Bittorrent has clear advantages over traditional
methods of publishing via the Internet, such as HT'TP or email, because
it can handle a far larger number of users concurrently and thus allows for
the publishing of far larger files, such as indie HD movies, podcasts, or other
content that would otherwise be unfeisable because of bandwidth constraints
2] [3]. This system would also be superior to other forms of P2P though the
use of a "everseed” that would keep the torrent from "dying” (a state where
there are no peers with a complete copy of the file).

1.2 Purpose

This project started out as writing a better download client, but there is
already a plethora of download clients available and finding an easy to use
and mature Bittorrent development library proved difficult. It would also
be difficult to surpass the quality and features of other download clients
developing by myself, and users would be unlikely to switch their choice in
download clients unless there was a very good reason. Thus, the project
has been redirected toward streamlining the currently convoluted process of
distributing a file using the Bittorrent protocol.

1.3 Expected Results

The research of this project involves the Bittorrent protocol. Given the
specification of the protocol given on the Bittorrent website, I aim to imple-
ment the server side aspect. This means encoding and dencoding of .torrent
metadata files, hosting of .torrent metadata files, and subsequent tracking
and peer-to-tracker communication of download peers by the tracker. It will
involve the subject areas of large scale networks, encoding and decoding al-
gorithms, and peer-to-peer communication.

1.4 Type of Research

This project will be use-inspired basic research, because the underlying goal
is to gain an understanding of the benefits and limitations of the Bittorrent

protocol. There are great practical implications for the end product of this
research, but ultimately the project was started to gain an introduction to
networking and peer-to-peer technology.

2 Background

Bittorrent is an up and coming filesharing protocol that has emerged in the
wake of illegal services such as Kazaa, Napster, or Bearshare that have since
been shutdown or forced to end their copyright violations [5]. Bittorrent
is a much more legally feisable filesharing protocol than previous attempts,
because there is no copyrighted content to be stored on centralized servers
that can be subpoenaed or seized, and it has become extremely popular for
independent movie makers and other people that need to distribute their legal
content without buying an expensive server. A movie distribution method
using Bittorrent is also being developed by major movie companies, as they
too see the benefits of peer-to-peer technology.

(a) Traditional (b) Bittorrent

Figure 1: Comparison of traditional and Bittorrent methods of file distribu-
tion

Traditional file distribution (Figure 1(a)) uses a single centralized server
to provide a copy of the file to each downloader. This means that a popular
file can quickly exceed the hardware and network limitations of the cen-
tralized server, leading to slow download speeds, increased wait times, and
general user dissatisfaction.

Bittorrent (Figure 1(b)) solves this problem by making use of peer-to-
peer technology to scale available upload bandwidth according to demand.
This allows for the distribution of large files without paying for increasingly
expensive dedicated hosting and large internet connections.

The whitepaper written by the creator of Bittorrent, Bram Cohen, avail-
able on the official Bittorrent website is the most useful reference for this
project [1]. Additionally, there is a semi-official Bittorrent Specification avail-
able at theory.org written by the major Bittorrent developers [4]. This doc-
ument expands upon the official protocol specification in areas the official
specification is lacking. These two documents give a total description of all
aspects of Bittorrent, and will be the only necessary references throughout
the project’s extent.

3 Procedure and Methodology

3.1 Planning

The languages used in this project will be Python, for all parts of the project.
Performance is not an issue because the processor and bandwidth require-
ments are low. A webserver of some sort will be needed to host the .torrent
files, but this can be done with a third-party solution, or a basic server can
be written if needed. The stages of this project can be split up into a number
of clearly defined steps:

1. Study and implementation of encoding .torrent metadata files. These
files are "bencoded,” which is a translated form of dictionaries, lists,
strings, and integers. This will also coincide with studying of the vari-
ous kinds of metadata stored in .torrent files as well as an interface for
creating these .torrent files.

2. Implementation of a .torrent metadata file generator, for distribution
to clients.

3. Study and implementation of a Bittorrent tracker. The tracker must
process the .torrent metadata value, store it into a database, and then
handle processing ”announce” and ”scrape” requests from the clients
that wish to download the file. It will also make use of the ”"bencoding”
algorithm to send data from the tracker to the client.

A typical ”announce” request from a client consists of status and
unique identifying information. The tracker stores this information in a
database, and the tracker then sends the client identifying information
and a list of peers for the client to connect to for downloading and
uploading purposes.

A typical "scrape” request asks the tracker for status information
about a single or all torrents that the tracker is tracking. The differ-
ence between an "announce” and "scrape” request is determined by the
URL used to query the tracker. The tracker will respond with infor-
mation like the number of peers and seeds connected, and the number
of downloads completed. This data will be fetched from the database.

4. Making a web interface that takes a file, prompts the user for the
minimum amount of information regarding the file through the use of
automation and intelligent defaults, make a .torrent metadata file for
it, add it to the tracker, and put the file up for download via HTTP.

5. The final part of the project is the addition of the "everseed.” The
7everseed” is the initial and permanent uploader for the file that pre-
vents the torrent from ”dying” (a state where a complete copy of the
file does not exists among the peers in the swarm, preventing the peers
from ever completing downloading the file). This is a problem when a
torrent has been around for a long time or is not that popular.

3.2 Testing and Analysis
3.2.1 .torrent File Testing

Testing of encoding .torrent files is done using examples on the Bittorrent
website and others. The program will transparently handle errors because it
will simple treat the invalid input as a string. This will result in an incorrect
.torrent file though, so I will build in checking when I make the frontend for
making .torrents. Performance is also not an issue for the bencoding program
because it takes minimal time even with the use of Python. The torrent files
have also been verified using the official Bittorrent client as well as popular
clients such as Azureus or ShadOw’s.

[03:42:11] awang::hermit $./torrentfile.py

torrentfile.py 0.2

Enter a string: hello world!

Bencoded string: 12:hello world!

Enter an integer: 12345

Bencoded integer: 11234be

Enter a list: apple,orange,pear,grape
Bencoded list: 15:apple6:orange4:pearb:grapee

Example bencoded dictionary

Dictionary: {’myname’: [’andrew’, ’wang’],
’dozen’: 12, ’apple’: ’red’, ’banana’: ’yellow’}
Bencoded: d6:mynamel6:andrew4:wangeb5:dozenil2eb:
apple3:red6:banana6:yellowe

3.2.2 Diagram of a Typical Announce Request

Client accesses tracker URL with
urlencoded key/fvalue pairs

*info_hash", "peer_id", "port", Tracker parses the HTTP request,
"up|g_aded", "dgwrﬂgaded"r "eft", recognizes URL as an announce request,
"compact”, "event" and calls announce_request() function

Ex. "GET /announce/<key:val> HTTP/1.1

____/

Tracker inserts data from client request
into the peer database, and then selects
a number of peers randomly from the
database to send back to the client.

Peer list contains: "peer_id", "ip", "port"

____/

Tracker constructs response dictionary
telling the client how to act, status info,
and the list of peers from before
"warning message", "interval", "min
interval", "tracker id", "complete",
"incomplete", "peer list"

_____/

Tracker responds with a text/plain document
containing the bencoded dictionary of key/
value pairs.

Bencoding is defined at

Client bdecodes the text/plain http:/fwiki.theory.org/BittorrentSpecification

document, and then uses the
list of peers to connect to other
clients and start downloading
the file.

\C__*/

3.2.3 Analysis of a Typical Announce Request

The following is the step-by-step process through which the tracker handles
an announce request from a client. The client passes data to the tracker in
the form of urlencoded key-value pairs found in the the GET arguments of
the URL.

GET /announce/7uploaded=314159&compact=YES)21&numwant=3%&
ip=127.0.0.1&info_hash=abcdefghijklmnopgrstuvwxyz&event=started&

7

downloaded=951413&trackerid=&key=AWANG
&peer_id=evertestclient000000&port=6881&left=1 HTTP/1.0
Host: localhost:6969

User-agent: Python-urllib/1.16

The tracker then urldecodes this text, and turns it into a more useful
Python dictionary:

{’uploaded’: ’314159’, ’compact’: ’YES!’, ’numwant’: ’3’, ’ip’: ’127.0.0.1°,
’info_hash’: ’abcdefghijklmnopqrstuvwxyz’, ’event’: ’started’, ’downloaded’:
’951413°, ’key’: ’AWANG’, ’peer_id’: ’evertestclient000000’, ’port’: ’6881’,
>left’: ’1°}

The data in this dictionary is then used to form an appropriate response.
Various parts of this, such as the status, downloaded, key, and peer_id, are
stored in the database for later use. For example, the tracker honors the
numwant optional variable from the client, which is of the value 3, and forms
the following dictionary (please note that the peers in this scenario are gen-
erated randomly):

{’peers’: [{’ip’: u’68.150.132.78’, ’peer_id’: u’EVERCLIENT1111111111’,
’port’: 12454}, {’ip’: u’106.190.185.236°, ’peer_id’: u’EVERCLIENT8888888888’,
’port’: 41582}, {’ip’: u’8.56.239.117’, ’peer_id’: u’EVERCLIENT8888888888’,
‘port’: 64733}], ’min interval’: 240, ’complete’: 1, ’interval’: 720,
’warning message’: ’’, ’tracker id’: ’EVERTRACKER’, ’incomplete’: O}

This is then bencoded, and sent to the client as a text/plain document,
which is seen as follows:

d8:completeilelO:incompleteile8:intervali720el2:min interval
1240eb5:peersld2:1p13:250.192.86.977 :peer_i1d20:EVERCLIENT2222222222
4:portil8252eed2:ip13:156.51.108.137:peer_id20:EVERCLIENT7777777777
4:portill7leed2:ip13:64.166.125.537 :peer_id20:EVERCLIENT4444444444
4:porti2b819eeell:tracker id11:EVERTRACKER15:warning messageO:e

The client then bdecodes it, yielding the following dictionary:

{’peers’: [{’ip’: ’250.192.86.97’, ’peer_id’: ’EVERCLIENT2222222222°,
‘port’: 18252}, {’ip’: ’156.51.108.13°, ’peer_id’: ’EVERCLIENT7777777777’,
‘port’: 1171}, {’ip’: ’64.166.125.53’, ’peer_id’: ’EVERCLIENT4444444444°
’port’: 25819}], ’interval’: 720, ’complete’: 1, ’min interval’: 240,
’warning message’: ’’, ’tracker id’: ’EVERTRACKER’, ’incomplete’: O}

This data will then be enough such that the client can try to connect to
other peers and actually start downloading the file.

3.2.4 Intelligent Announce Peer List Response

When a peer finishes downloading a file and becomes a seed, it no longer
needs to be connected to other seeds.Most clients will at this point close and
refuse connections to other seeds to further overall performance of the swarm.

A similar feat can be achieved on the tracker-side by recognizing the state
of clients as seeds when they send announce requests. The announce response
handling method of the tracker was improved such that if a seeding client
requests a new list of peers, the tracker will return a list of peers containing
only peers without complete copies of the file. This helps increase download
performance as well.

3.2.5 Announce Peer List Compression

An optional extension to the announce response functionality of the tracker is
to compress the list of peer IP addresses and ports by sending them in binary
form instead of ASCII. The ability of the client to support compressed peer
lists is identified by the presence of an optional key-value pair in the announce
request.

The compressed peer list format ignores the ID component of the uncom-
pressed peer list, and turns the IP address into 4 bytes and the port into
2 bytes. This means huge bandwidth savings, as an IP address can take as
many as 15 bytes when ASCII encoded and a port number 4 bytes in ASCII,
with the peer id is another 20 ASCII encoded bytes. In addition, the peer
list is normally bencoded, which adds on about another 10 bytes or so to
each peer. This means that the binary encoded compressed peer list is far
smaller than the ASCII encoded uncompressed peer list. Both formats are
detailed in the Bittorrent Specification page.

By greatly reducing the size of the peer list for announce requests, the
performance of the tracker should scale according to the size of the response
size. Since the peer list makes up the vast part of the response, the response
time should be much faster than before in non-local situations.

3.3 Goals and Requirements

The goal of this project is a complete solution to publishing files using Bit-
torrent. The requirements for this project are as follows:

1. Easy to use, automated front end for the user
2. Bencoded .torrent file creation and parsing.

3. Correct implementation of tracker software and tracker-peer communi-
cation

Announce requests
Scrape requests

Commonly implemented features present in trackers

4. Implementation of an automatic, permanent ”everseed” that prevents
the torrent from dying

4 Results

Due to restarting my project second quarter, time constraints prevented me
from finishing all aspects of my project. Of the requirements of my project,
the .torrent file metadata generator, the bencoding functionality, and all
parts of the tracker are functional and tested. The "everseed” client and the
web interface have not been completed. The testing Bittorrent client I wrote
is able to send both announce and scrape, and the test client and the tracker
have been fully documented with the Python API.

References

[1] Bram Cohen. Incentives build robustness in bittorrent. Technical report,
Bittorrent, May 2003. Written by the creator of Bittorrent, it goes into
far more detail about the inner workings than the TechRepublic report
without giving implementation details. Talks about Pareto efficiency and
the prisoner’s dilemma that regulate download and upload rates to and
from a given client, which insures that there aren’t any peers that only
download and don’t contribute back through uploading.

10

2]

P. Garbacki, J. A. Pouwelse, D. H. Epema, and H. J. Sips. The bittorrent
p2p filesharing system: Measurements and analysis. Technical report,
Delft University of Technology, Department of Computer Science, 2006.
Analyzes the traffic of the high-usage Suprnova.com Bittorrent tracker
and .torrent file server. It showed the benefits of Bittorrent’s peer-to-peer
nature in distributing files, as the content was distributed much faster
through Bittorrent compared to additional methods. However, because
of the low number of seeds that continue uploading the data indefinitely,
the torrent file slows down and dies soon after the initial burst of download
traffic.

D. Qiu and R. Srikant. Modeling and performance analysis of bittorrent-
like peer-to-peer networks. Technical report, University of Illinois at
Urbana-Champaign, Coordinated Science Laboratory, 2006. Goes into
great depth analyzing the performance of a generic Bittorrent swarm of
clients and uploaders. Uses a simple fluid model to predict how upload
and download rate are affected, the overall effectiveness of the Bittorrent
protocol as a distribution method, and how well the protocol functions
under conditions like selfish peers, low request arrival rate, and bottle-
necked upload and download rate.

Theory.org. Bittorrent Specification, 2006. Unofficial specification written
by the developers of Bittorrent applications such as clients and trackers.
Contains much more implementation detail than the official specification
written by Bram Cohen and is a useful engineering reference. Describes
the tracker-client communication protocol in great depth and also con-
tains additional test cases for bencode and bdecode.

R. Tyagi. The technology behind bittorrent means smarter p2p for all.
Technical report, TechRepublic, 2005. Explains the major differences
between Bittorrent and services such as Napster of Kazaa that make
Bittorrent a second generation P2P distribution system. Also has a brief
overview of how Bittorrent works, and some of the algorithms that make
it efficient and fast, such as choking, rarest first, and strict order.

11

