

Artificial Intelligence:
Crowd Dynamics using Particle Swarm Optimization

Keith Ainsworth
Computer Systems Research Lab

2007-2008

Abstract

Artificial Intelligence has for long been an important
aspect of computer science, but unfortunately artificial
intelligence is usually computed from a single agent
perspective or with multiple, but highly omniscient agents.
I plan on creating an artificial intelligence engine, which
works by having multiple agents, each with highly limited
perspective. In order to solve tasks, they need to
communicate their portions with each other through a
network. Using that scheme, it will much more accurately
simulate crowd dynamics, using particle swarm
optimization to optimize the calculations.

Person

PNetwork World

weight_list

Class Diagram

Introduction

The AI engine I'm programming is implemented through
C++'s object orientation. I have programmed several
classes which interact in order to make a completed end
project. As my engine is an agent based networking engine,
naturally the first two classes are the agent, Person, and
network, PNetwork classes. The main program must include
an array of Persons, which is passed to the PNetwork class
on instantiation. Then the main program only needs to talk
to the PNetwork, as its managing the list of people from
instantiation on, and will take care of the movement of the
Persons.

The Person and PNetwork also utilize another class I've
written, the weightlist class. This class is a set of two array
based, fixed size, looping lists; one for data, the other for
the data's relative weighting. The important feature of the
weightlist that other pre-written container classes don't offer
is a summation function. This function effectively averages
the data list, based on the relative weightings, and a decay
weighting that favors the more recent entries in the list. This
is crucial because the communication aspect of the
PNetwork has to have a way of keeping track of each
Person's communications. Therefore each Person in the
PNetwork is assigned a weightlist. When the PNetwork is
called to iterate, it calls the communicator functions in all
the Persons, and adds the message to the weightlist of
every other person, assigning the weighting based on the
distance the message had to travel (the distance between
the two agents). Then each weightlist is summed and the
results are given to their respective Persons as their new
prospective direction.

Methods

Expected Results

To program this engine, along with the accompanying
game (for graphical output reasons) I'll need C++ (and
therefore the g++ compiler) along with the SDL (software
digital layer) libraries, for keyboard input and graphical
output, and I'll be using OOP programming (therefore the
gcc compiler won't be sufficient) and PSO for optimization.

Eventually I will apply this AI engine to a game I've
already programmed in Java. Using this game with enemy
AI, there will be a very clear visual display as to whether or
not the engine is effective and fast. If the game runs
smoothly and is challenging, I'd consider it a success.

I've programmed this project so far with several
debugging features and text based outputs for constant
error checking. While for the final project these would be
commented out for the final compilation, I plan to continue
programming with those features to allow for ease of code
writing and testing.

In the final project, the ultimate judgment will come in
the form of randomized testings. For humans controlling
the AI objective will throw constantly changing conditions
at my AI engine. If the engine can dynamically adapt to
any situation given to it by a human player, and maintain
an effective run speed then it can be considered effective.
However, until the engine has been implemented in the
game, testing will continue to come from tester programs,
which feature extensive data outputting and try the trick
cases and perform bulk testing to make sure the classes
and methods being tested are functional.

This program relies heavily on object oriented
programming and function pointers, two fairly involved
programming tasks. I've done many demo programs
focusing on these very issues. Early on I ran into a
roadblock attempting to create two simultaneously co-
referencing classes. I solved that issue through template
classes. I will expect to have to solve many similar issues
in the future in the same manner.

This should create a real time multiple agent based,
crowd dynamics computing artificial intelligence engine,
which will be applied to a game to create realistic
simulations of groups of people.

Seniors next year attempting to create a program that
utilizes different artificial intelligence schemes, could use
this as one of them to compare and contrast effectiveness
and speed.

