

Crowd Dynamics Artificial Intelligence
with Particle Swarm Optimization

TJHSST Computer Systems Lab, 2007-2008
By: Keith Ainsworth

Introduction
Articial Intelligence has for long been an

important aspect of computer science, but
unfortunately articial intelligence is usually computed
from a single agent perpective or with multiple, but
highly omniscent agents. I have created an articial
intelligence engine, which works by having multiple
agents, each with a highly limited perspective. In
order to solve tasks, they need to communicate their
portions with each other through a network. Using
that scheme, it will much more accurately simulate
crowd dynamics, as seen in real life, using particle
swarm optimization to optimize the calculations.

Results

This project has greatly expanded the field
of Artificial Intelligence, with this much more
modular and isolated AI engine. There are no
hints given to the agents in this simulation, they
must discover and solve their task themselves,
with only their communications to guide them,
which also get distorted. Essentially, by
increasing the amount of communication, and
decreasing the amount of intelligence of each
agent, I have made a much more realistic
search optimization, crowd dynamics AI engine.

Since time is a factor in the efficiency
computations, all of these results are
standardized through a rate-restricting class I
wrote called rlimit. This down limits the
simulations speed so that regardless of what
computer it's run on the simulation will run at
the same speed. If an iteration of the simulation
runs too fast, the library will add a customized
delay (accurate to +/-5 milliseconds) to regulate
the speed. If more than .5\% of the runs take
more than the nominal iteration length, it will
discard other statistical output.

With this complex AI system, there were
many different variables which had significant
results on the simulations efficiency, allowing
for customization depending on circumstance.
The variables I modified were: sightline
distance and communication clarity. As it
should be expected, when the sightline
distance was decreased or the communication
clarity decreases the efficiency of the
simulation decreased, while when they
increased, the simulation's efficiency increased.

Two Charts Illustrating the relation between the seek
efficiency and the sightline distance (left) and the

communication efficiency (right).

Background

This program relies heavily on object
oriented programming and function pointers,
two fairly involved programming tasks. Early on
I ran into a roadblock attempting to create two
simultaneously co-referencing classes. I solved
that issue through template classes. I will
expect to have to solve many similar issues in
the future in the same manner. To program this
engine, along with the accompanying game (for
graphical output reasons) I've used C++ (and
therefore the g++ compiler) along with the SDL
(software digital layer) libraries, for keyboard
input and graphical output, and I have used
OOP programming (therefore the gcc compiler
won't be sufficient) and PSO for optimization.

Above is a screenshot of a Pnetwork simulation
running with ngon obstructions.

Below is a screenshot of a theta-bounded agent field
simulation. In the middle of the dense cluster. Towards the
upperleft is the target.

	Slide 1

