
Music Analysis
Josiah Boning

TJHSST Computer Systems Lab, 2007-2008

Abstract
Although music is one of the most universal aspects of human culture, it is 
very difficult to define. Most definitions of music have been dependent on 
attributes such as rhythm, melody, and harmony, which are extremely 
subjective, so the ability to identify music has been limited to humans.  This 
project explores statistical and signal processing techniques for computational 
analysis of music and provides a basic framework for more advanced music 
recognition and identification efforts.

Background
Computers have already been used to perform analysis of music. Research has 
shown that different genres of music can be distinguished by fractal dimension 
and that machine learning techniques could successfully identify musical 
genres[2][1]. Other research has attempted to deconstruct music in terms of 
rhythmic and melodic patterns, and even looked at writing software to generate 
music conforming to such patterns[3]. However, each instrument has a 
different sound quality, and composers write music with these timbral 
differences in mind. Simply analyzing the notes on sheet music precludes the 
use of these differences in the analysis. Audio recordings, in contrast, allow 
analysis of exactly what the composer intended his audience to hear.
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Fractal Dimension
The equations below are evaluated numerically to yield the fractal dimension of the audio waveform. 
Since different genres of music are distinguishable by their fractal dimensions, it is reasonable to suspect 
that music itself might be distinguishable by its fractal dimension[2]. The equations are evaluated over 
discrete audio data, so their accuracy will be increased by the use of cubic splines to interpolate between 
data points and allow smaller differential values when doing numerical integration.

Spectral Decomposition
Spectral decomposition transforms audio data from the time domain to the 
frequency domain using a Fourier transform. The Fourier transform 
decomposes the audio waveform into sinusoids of varying frequencies and 
tells how much of each wave is present. The Fourier transform is defined as:

Instead of having the sound as f(t),  a function of time, we have it as F(v), a 
function of frequency.

The waveform above is clearly some composition of sine waves. Performing a 
Fourier transform, however, yields much more information about its 
composition. The frequency spectrum below shows that the wave is a 
combination of sine waves at 440, 880, and 2000 Hz.
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Methods & Concepts

What humans perceive as sound is the variation in pressure of waves passing 
through the air. Computers store audio data as a sequence of discrete samples 
of the pressure waveform. According to the Nyquist-Shannon sampling 
theorem, as long as the waveform contains no frequencies equal to or higher 
than 1/2 of the sampling frequency, this representation loses no information, 
and the original waveform can be reconstructed precisely. However, while this 
representation is useful for describing and reproducing the original sound 
wave, it does not make other information about the content of the wave readily 
apparent. Therefore, various techniques must be applied to extract more 
interesting information from the waveform.
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Spectrograms and Data Aggregation
Calculating many Fourier transforms in sequence results in a spectrogram, which provides a graphic 
representation of the audio data’s frequency distribution over time. For example, this spectrogram 
clearly shows four different tones in sequence:

Summing the spectrogram vertically 
yields a rough measurement of the volume 
at each point. This is not particularly 
useful by itself, and performing a Fourier 
transform on this aggregate data also 
yielded no useful trends. Below are the 
results of this Fourier transform on 
various pieces of music.

Summing the spectrogram horizontally 
yields the total frequency composition of the 
audio data, the aggregate Fourier transform 
of the entire audio sample over time. 
Performing this aggregation on spectrograms 
of music yields an interesting result:

All of the songs have a strong inverse 
correlation between frequency and the 
magnitude of that frequency component. This 
correlation does not hold for white noise:
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