Music Analysis

Josiah Boning

TJHSST Senior Research Project Computer Systems Lab, 2007-2008

Purpose

- Apply machine learning algorithms to audio data
 - Neural Networks
- Autonomously identify what is music

Background

- Bigarelle and lost (1999)
 - Music genre can be identified by fractal dimension
- Basilie et al. (2004)
 - Music genre can be identified by machine learning algorithms
 - Used discrete MIDI data

Methods

- Data Processing
 - Spectral Analysis: Fourier Transform
 - Fractal Dimension: Variation and ANAM Methods
- Machine Learning
 - Feed-Forward Neural Network

Fourier Transform

Fourier Transform

$$D = \lim_{\epsilon \to 0} \frac{\log N(\epsilon)}{\log \frac{1}{\epsilon}}$$

- "a statistical quantity that gives an indication of how completely a fractal appears to fill space" -- Wikipedia
- Audio data is set of discrete sample points, not a function
- Therefore, fractal dimension can only be estimated

Variation Method:

$$\lim_{\tau \to 0} \left| 2 - \frac{\log \left| \frac{1}{b-a} \int_{a}^{b} \left| max\left(f(t)\right) - min\left(f(t)\right) \right| dx}{\log \tau} \right|$$

ANAM Method:

$$\lim_{\tau \to 0} \left| 2 - \frac{\log \left| \frac{1}{b - a} \int_{x=a}^{x=b} \left[\frac{1}{\tau^{2}} \int_{t_{1}=0}^{\tau} \int_{t_{2}=0}^{\tau} |f(x+t_{1}) - f(x-t_{2})^{\alpha}| dt_{1} dt_{2} \right]^{1/\alpha} dx \right|}{\log \tau} \right|$$

- Variation and ANAM methods are two methods of calculating/estimating the same value
- Should yield similar results
- They don't...

```
143 days, 5 hours, 45 minutes, and 58 seconds until graduation!!

jboning@bulusan "/techlab/code $ ./project 30\ -\ Good_Vibrations.wav
number of sample points: 9659664

Variation method: 1.016170

ANAM method: 2.420564

143 days, 5 hours, 45 minutes, and 38 seconds until graduation!!

jboning@bulusan "/techlab/code $ []
```

Integration Error

• Euler's Method -- Rectangles

Discrete data – limited by sampling frequency

Integration Error

Solution: Interpolation

Interpolation Methods

- Polynomial Interpolation Single formula used to meet all data points
 - Lagrange Interpolation
 - Newton's Divided Differences Interpolation
 - Chebyshev Interpolation
- Splines several formulas in segments
 - Linear Spline data points connected by lines
 - Cubic Spline data points connected by cubic polylnomials

Cubic Splines

Cubic Splines

A cubic spline S(x) through the data points $(x_1, y_1),...,(x_n, y_n)$ is a set of cubic polynomials

$$S_{1}(x) = y_{1} + b_{1}(x - x_{1}) + c_{1}(x - x_{1})^{2} + d_{1}(x - x_{1})^{3} \text{ on } [x_{1}, x_{2}]$$

$$S_{2}(x) = y_{2} + b_{2}(x - x_{2}) + c_{2}(x - x_{2})^{2} + d_{2}(x - x_{2})^{3} \text{ on } [x_{2}, x_{3}]$$

$$\vdots$$

$$\vdots$$

$$S_{n-1}(x) = y_{n-1} + b_{n-1}(x - x_{n-1}) + c_{n-1}(x - x_{n-1})^{2} + d_{n-1}(x - x_{n-1})^{3} \text{ on } [x_{n-1}, x_{n}]$$

with the following properties:

Property 1:
$$S_i(x_i) = y_i$$
 and $S_i(x_{i+1}) = y_{i+1}$ for $i = 1, ..., n-1$

Property 2:
$$S_{i-1}'(x_i) = S_i'(x_i)$$
 for $i = 2, ..., n-1$

Property 3:
$$S_{i-1}$$
" $(x_i) = S_i$ " (x_i) for $i = 2, ..., n-1$

Cubic Splines

Machine Learning

- Neural networks
- Feed-Forward

Neural Network Data Structures

```
typedef struct neuron {
  double value;
  struct edge* weights;
  double num weights;
} neuron;
typedef struct edge {
  struct neuron* source;
  double weight;
} edge;
// sizeof(neuron) == 20
// sizeof(edge) == 16
```

Neural Network Pseudo-Code

For each layer:

For each node:

value = 0

For each node in the previous layer:

value += weight * value of other node
value = sigmoid(value)

$$P(t) = \frac{1}{1 + e^{-t}}.$$

Neural Network Challenges: Memory

- Audio data: 44100 samples/sec
- Processing 1 second of data
- 44100 input, 44100 hidden nodes, 1 output node
 - Memory: (44100 * 2 + 1) * 20 bytes = 1.7 MB
- 44100 ^ 2 + 44100 edges
 - Memory: (44100 ^ 2 + 44100) * 16 bytes = 31 GB
- Solution(?): Alternative input (fractal dimension, Fourier transform data) rather than audio data

Neural Network Challenges: Training

- Training Algorithms
- Training Data
- Backwards Propagation