
1



TJHSST Computer Systems Lab Senior Research Project Paper

Crowd Dynamics Artificial Intelligence with Particle Swarm

Optimization

2006-2007

Keith Ainsworth

May 23, 2008

Abstract

Articial Intelligence has for long been an important
aspect of computer science, but unfortunately arti-
cial intelligence is usually computed from a single
agent perpective or with multiple, but highly omnis-
cent agents. I plan on creating an articial intelligence
engine, which works by having multiple agents, each
with highly limitted perspective. In order to solve
tasks, they need to communicate their portions with
each other through a network. Using that scheme,
it will much more accurately simulate crowd dynam-
ics, using particle swarm optimization to optimize the
calculations.
Keywords: AI, PSO, C++, OOP, SDL

1 Introduction

The AI engine I’m programming is implemented
through C++’s object orientation. I have pro-
grammed several classes which interact in order to
make a completed end project. As my engine is an
agent based networking engine, naturally the first two
classes are the agent, Person, and network, PNetwork
classes. The main program must include an array of
Persons, which is passed to the PNetwork class on
instantiation. Then the main program only needs
to talk to the PNetwork, as its managing the list of
people from instantiation on, and will take care of

the movement of the Persons.
The Person and PNetwork also utilize another class

I’ve written, the weightlist class. This class is a set of
two array based, fixed size, looping lists; one for data,
the other for the data’s relative weighting. The im-
portant feature of the weightlist that other prewrit-
ten container classes don’t offer is a summation func-
tion. This function effectively averages the data list,
based on the relative weightings, and a decay weight-
ing that favors the more recent entries in the list.
This is crucial because the communication aspect of
the PNetwork has to have a way of keeping track of
each Person’s communications. Therefore each Per-
son in the PNetwork is assigned a weightlist

2 Background

Artificial Intelligence programming always requires a
task at hand for func- tionality and relative signifi-
cance. In my implementation, the initial task for the
agents in my network based artificial intelligence en-
gine will be target detection and convergence. The
agents will have to locate and converge upon a ran-
dom target (eventually to become a user controlled
target) using meth- ods streamlined with particle
swarm optimization methods. Additionally, as they
attempt to accomplish their motives, they should be-
come increasingly more efficient at it. This would
have to be as a result of the optimizations found in

2



the paper by Kennedy and Eberhart

3 Procedures and Methods

3.1 Overview

This program relies heavily on object oriented pro-
gramming and function pointers, two fairly involved
programming tasks. Early on I ran into a road-
block attempting to create two simultaneously co-
referencing classes. I solved that issue through tem-
plate classes. I will expect to have to solve many
similar issues in the future in the same manner. To
program this engine, along with the accompanying
game (for graphical output reasons) I’ll need C++
(and therefore the g++ compiler) along with the SDL
(software digital layer) libraries, for keyboard input
and graphical output, and I’ll be using OOP pro-
gramming (therefore the gcc compiler won’t be suffi-
cient) and PSO for optimization.

The way the engine works is by: instantiate a
PNetwork with a list of Persons, and run the PNet-
work in a non-terminating loop (except by exit). The
PNetwork class has a step() method in which the
communicator methods from each Person in its list
are called. The communicator methods simply return
whatever the Person can see that he wishes to inform
the others about. Then those messages are added
into weightlists associated with the other people in
the list. When everyone has communicated what
they have to communicate, the PNetwork calls the
summation function on the weightlists and instructs
the Persons the summation is relevant to, to head in
that direction. That simple process can repeat end-
lessly, with obvious variations in the behavior created
through different communicator methods (each Per-
son only has a pointer to a function of the proper
parameters and return type, it can be defined on in-
stantiation to be whatever the programmer wishes)
and different communication distances and message
resilience (currently they decay in accuracy as a func-
tion of the distance they travel).

Figure 1: Regular PNetwork Simulation tester shell
running with 212 agents.

3.2 Testing

I’ve programmed this project so far with several de-
bugging features and text based outputs for constant
error checking. While for the final project these
would be commented out for the final compilation,
I plan to continue programming with those features
to allow for ease of code writing and testing. Right
now I’m using a series of testing shells to assess the re-
silience of my AI system. I have shells which print out
pixels for each agent in the simulation, using SDL,
which work for the regular PNetwork and ngon world
classes. These automated tests inform me whether
the program is doing what it should be.

Eventually I will apply this AI engine to a game
I’ve already programmed in Java. Using this game
with enemy AI, there will be a very clear visual dis-
play as to whether or not the engine is effective and
fast. If the game runs smoothly and is challenging,
I’d consider it a success. That will be the final test-
ing.

4 Expected Results

This project will greatly expand the field of Artifi-
cial Intelligence, with this much more modular and
isolated AI engine. There are no hints given to the
agents in this simulation, they must discover and
solve their task themselves, with only their commu-
nications to guide them, which also get distorted.
Essentially, by increasing the amount of communi-
cation, and decreasing the amount of intelligence of

3



each agent, I will make a much more realistic search
optimization, crowd dynamics AI engine.

This project requires plenty of additional research
however. I could program the engine simply as writ-
ten above, but my real intent is to create such an
engine that can be used in real time environments,
such as but not limitted to, game environments. By
implementing particle swarm optimization, which in
and of itself will require much additional research, I
should be able to accomplish the desired feat of real
time run speed.

5 References

6 Appendixes

4


