
Programming a New Sugarscape

Patrick Coleman
Period 6

COMPUTER SYSTEMS RESEARCH
Fall/Spring 2007-2008

Research Paper Thrid Draft - April 2008

May 23, 2008

Abstract

This project studies artificial societies, especially the
Sugarscape and the Schelling segregation model. To
implement the Sugarscape, a display of the sugar-
filled environment with agents is outputted. The
simulation allows agents to harvest sugar, consume
sugar, die of starvation, and die of old age and al-
lows the environment to grow back at a given rate.
To implement the Schelling segregation model, two
distinct groups of agents are added to the environ-
ment with a preference for neighbors of their own
kind to determine the effects of the individual pref-
erences on the society at large. The reasons these
two projects are being implemented is because while
both are often compared, the two models in their
original forms have not been combined and analyzed
in a single simulation. In addition to displaying the
environment, graphs showing the population growth
and wealth distribution are displayed. These graphs
analyze what is occurring in the simulation. Seasons
are implemented to analyze agent migration. The
program code is broken up into files: a main file, an
environment file, an agent file, a location file, a dis-
play file, and a simulation file. The conclusions show
that the the model conforms to Axtell and Epstein’s
models in the areas which were implemented. But
more importantly, it shows that the simulation con-
forms to real world phenomena reasonably well.

1 Introduction

The program implements several aspects of Axtell
and Epstein’s Sugarscape model. An environment
with locations holding various amounts of sugar,
which grows back over time is populated by a het-
erogeneous group of agents, different with respect
to vision, metabolism (rate at which sugar is con-
sumed), starting wealth, and age limit. The agents
move to the locations with the highest concentration
of sugar. Over time agents die and new agents are
added to the environment according to an exponen-
tial function. Two graphs are displayed: one showing
population growth over time and the other showing
wealth distribution. The information shown by these
two graphs is analyzed. In addition Schelling segre-
gation and seasonal migration are implemented.

2 Background

As of yet the Sugarscape society has not been im-
plemented in Ruby and it would be valuable for this
code to be available because of the scope of the Sug-
arscape research. Sugarscape has inspired further re-
search concerning agent-based modeling and artificial
societies. The Schelling segregation model was one
of the first artificial societies to be implemented on
a computer and has defined the area of study. The
combination of these two models can provide valu-
able insight into human culture. Perhaps 3 different

1

groups could be put into the Sugarscape instead of
the usual two different groups. Lastly, combat be-
tween different groups will be implemented, as this
has not yet been done by Tony Bigbee at George
Mason.

Growing Artificial Societies: Social Sciences from
the Bottom Up written by Joshua M. Epstein and
Robert Axtell and Micromotives and Macrobehav-
ior by Thomas Schelling define Sugarscape and the
Schelling segregation model. Tony Bigbee from
George Mason University has written the Sugarscape
in Java and his code will be used for reference along
with the first book primarily. In the book by Ax-
tell and Epstein Schelling’s segregation model is men-
tioned and the Sugarscape is built with two separate
groups (tribes) which combat against each other. The
results should mirror those of the Sugarscape mod-
els in Growing Artificial Societies. However, once
Schelling segregation is implemented with possibly
more than two different colored populations the re-
sults will differ. In all likelihood only two groups will
survive in the long run. The final results will be pre-
sented with screenshots of the running program along
with graphs of relationships of variables. It will per-
form like previous Sugarscape models. Growing Arti-
ficial Societies and Micromotives and Macrobehavior
are two books which are used as references to develop
this project. The article “Seeing Around Corners”
shows how both the Schelling segregation model and
the Sugarscape compare to various other artificial so-
cieties in the field of generative social sciences. “The
Theoretical Basics of Popular Inequality Measures”
examines various ways of determining inequality in
a population. The measures used are: simple range,
the McLoone index, the coefficient of variation, the
Gini coefficient, and Theil’s T statistic. Gigliotta’s
article “Groups of Agents with a Leader” examines
how a leader affects a group of agents attempting
to reach a goal location. The leader was effective
in small groups without communication, and espe-
cially effective when he had increased vision. “Self-
Organizing Social and Spatial Networks under What-
if Scenarios” by Moon et al analyzes the combina-
tion of Sugarscape, a spacial model, and Construct
a network model. “Comparing Multicast and News-
cast Communication in Evolving Agent Societies” by

Eiben et al looks at the effectivenes of communica-
tion between a small group versus a more successful
model of communicating with the entire group.

3 Development

I. Theory. The algorithm driving the move method
of the agents is at the core of the simulation. The
agents look out in the four cardinal directions as far
as their vision allows and move one square in the di-
rection of the closest location with the most sugar.
If more than one location is optimum, a random di-
rection is chosen. To incorporate Schelling segrega-
tion, locations in which there would be more agents
of the opposite color than of the same color are re-
moved from the possible choices. See the section on
agent movement in Appendix A. Agents are added
to the environment according to an exponential func-
tion which models real life. The section on popula-
tion growth in Appendix A shows how the population
growth is graphed. The inequality of the population
is found using the Gini coefficient. The Gini coeffi-
cient is calculated according to the formula: 1−2∗L
where L is the area under the Lorenz curve, which is
calculated using trapezoidal Reiman sums. The sec-
tion on wealth distribution in Appendix A shows how
the Gini coefficient is calculated and how the Lorenz
curve is graphed. Lastly, hemispherical winters cause
agent migration to other high density locations and
cause a drop in population.

II. Design Criteria. The goal of the project is to ac-
curately represent the models it is implementing. It
follows the Sugarscape design from Growing Artificial
Societies by Axtell and Epstein and the Schelling seg-
regation design from Schelling’s book Micromotives
and Macrobehavior. The agents and the environment
behave as they should with respect to the aspect im-
plemented so far. The Schelling segregation model
will accurately represent Schelling’s model as best as
possible, but will not be perfect because concessions
will need to be made to allow it to run in the Sug-
arscape. The information shown in the graphs and
the display of the environment will be compared to
the results found by the authors.

III. Materials. The program code was written in

2

Ruby (see http://ruby-lang.org/). Tk toolkit is used
for the GUI representation and graphics in the pro-
gram. A text file which represents the maximum ca-
pacities of sugar in various locations in the environ-
ment was used from GMU’s Tony Bigbee’s files (he
wrote a Java version).

IV. Procedures. Currently the program displays
the environment, and has the agents move and har-
vest sugar. The display draws each location in the
matrix using a circle whose radius increases based
on the amount of sugar at that location. The dis-
play draws the agents as a red circle with the same
radius as a location with the maximum amount of
sugar. The display also shows the current time step.
The GUI window has a frame containing the canvas
and buttons to play/pause, step the simulation, in-
crease the refresh rate, and to quit the program. The
agents themselves choose the closest location with the
greatest amount of sugar. If more than one location
matches these requirements, one of them is randomly
chosen. Locations with more agents of the opposite
color are removed from the choices. Then the agent
harvests the sugar and consumes from his own sup-
ply of sugar. At each time step the sugar in the
environment grows back by one. The program be-
gins with a small number of agents and adds to the
population using an exponential function so that it
reaches carrying capacity. Modifications in the in-
dividual agents include an improved move method, a
random age limit, and a variable for red or blue color,
to allow for segregation. The GUI window has been
modified to include buttons to change the graph and
change the refresh rate. There is a button to change
the refresh rate in the display of the environment and
of the graphs. The two graphs which are now dis-
played are the population growth over time, and the
percent of total wealth over the percent of the popu-
lation (Lorenz curve). To get the population graph,
it keeps track of the length of the array of agents
at each time step in the simulation file and cycles
through the array of population values in the display
file. To get the wealth graph, it cycles through the
array of agents and stores the wealth of each individ-
ual agent. Then it sorts this array and cycles through
it keeping a running total to determine percents.

4 Results

It has been determined that the program meets the
design criteria in the areas in which it was imple-
mented. The graphs are what answer many of the
experimental questions. Descriptions of the popula-
tion growth graph refer to the section on population
growth in Appendix B. In general it follows the shape
of logistic graphs which are proven to be a fairly accu-
rate representation of population growth. Growth is
slow when the population is close to zero and close to
the carrying capacity, and growth is highest at half of
the carrying capacity. The few anomalies reveal cer-
tain aspects of the simulation. The initial portion of
slow growth is smaller than the final portion because
the population begins with three individuals instead
of one (but starting with one agent would not com-
pletely remedy this). The oscillations near carrying
capacity come from the age limit of agents. It takes
longer for the population to decrease due to dead
agents than it does for it to react to the added agents.
The oscillations decrease over time and will eventu-
ally disappear. At about half of carrying capacity the
line begins to become jagged instead of fairly straight
like it was earlier in the simulation. This is a result of
the heterogeneous population. In the beginning even
agents with low vision and high metabolism (less fit
agents) have room to survive in the regions of abun-
dant sugar. As the environment fills up only better
fit agents can survive on the fringes, areas with less
sugar, so many added agents die quickly. The effects
are even more pronounced as population approaches
carrying capacity. The graph has even more informa-
tion to offer when seasons are included. The spikes
in the graph represent the winters. The spikes alter-
nate in intensity because the northern winter is more
sevr removing more high desnity sugar locations. De-
scriptions of population inequality refer to the graph
in the wealth distribution section of Appendix B. At
first a bar graph was used to represent wealth dis-
tribution, but it was replaced with the Lorenz curve.
Both conform to the graphs in Axtell and Epstein’s
book. They show that there are very few wealthy
agents (agents with a lot of harvested sugar stored)
and many poor agents. In this sense the population
is pretty unequal. The Gini coefficient is a numeri-

3

cal representation of this phenomenon. A coefficient
of zero represents perfect equality and one represents
perfect inequality (one agent has all the wealth). The
number is just over .5 showing that the Sugarscape
population is closer to perfect inequality than to per-
fect equality. See Appendix B for a display showing
Schelling segregation. There is some segregation at
this point. The environment did not split in half
as was expected. The most probable explanation is
that this is due to the method of adding agents. Ran-
dom colored agents are added to random empty lo-
cations. Asexual reproduction of same-color agents
would likely produce better results.

5 Further Research

Further research could include implementing other
aspects of the Sugarscape, as described by Axtell
and Epstein. Possible topics include reproduction or
the trade of spice. In addition, other studies of ar-
tificial societies (like Schelling’s segregation model)
could be analyzed using the Sugarscape as the base
environment. Changing the range of values in the
heterogeneous aspects of the agents yields different
results in the graphs. This could be attempted to be
quantified. Combat could be implemented, a desire
expressed by Tony Bigbee. Genocide, as described
in “Seeing Around Corners” could be implemented.
The manner in which agents are added to the envi-
ronment could be done according to other functions
to show other phenomena, like exponential growth.In
addition to changing the environment, the method of
determining social equality could be determined us-
ing some of the different methods described in “The
Theoretical Basics of Popular Inequality Measures.”
Lastly, the Sugarscape could be implemented in other
languages, like assembly for example.

6 Bibliography

Eiben, A. E., et al. “Comparing Multicast and News-
cast Communication in Evolving Agent Societies.”
Department of Artificial Intelligence at Vrije Univer-
siteit Amsterdam. June 25, 2005.

Epstein, Joshua M. and Robert Axtell. Growing
Artificial Societies: Social Sciences from the Bot-
tom Up. Washington, D.C.: The Brookings Institute
Press, 1996.

Gigliotta, Onofrio. “Groups of Agents with a
Leader.” Journal of Artificial Societies and Social
Simulation 10 (2007). 30 Jan. 2007 < http :
//jasss.soc.surrey.ac.uk/10/4/1.html > .

Hale, Travis. “The Theoretical Basics of Popular
Inequality Measures.” University of Texas. < http :
//utip.gov.utexas.edu/tutorials/theobasicineqmeasures.doc >

Moon, Il-Chun and Kathleen M. Carley. “Self-
Organizing Social and Spatial Networks under What-
if Scenarios.” Carnegie Mellon University School of
Computer Science. May 14, 2007.

Rauch, Jonathan. “Seeing Around Corners.” The
Atlantic Monthly. Apr. 2002. 35-48.

Schelling, Thomas C. Micromotives and Macrobe-
havior. New York: W. W. Norton & Company, Inc.,
1978.

7 Appendices

Appendice A
Code
agent move method

def move
@@emptylocs[[@posY,@posX]] = 0

#Possible locations
choices = [nil,nil,nil,nil]
#Choices are invalid if there is an agent in the neighboring location
choices[0] = [@@env[@posY+1][@posX],-1,0] if @posY+1 < @@env.length and @@env[@posY+1][@posX].hasAgent == -1
choices[1] = [@@env[@posY-1][@posX],-1,0] if @posY-1 >= 0 and @@env[@posY-1][@posX].hasAgent == -1
choices[2] = [@@env[@posY][@posX+1],-1,0] if @posX+1 < @@env.length and @@env[@posY][@posX+1].hasAgent == -1
choices[3] = [@@env[@posY][@posX-1],-1,0] if @posX-1 >= 0 and @@env[@posY][@posX-1].hasAgent == -1

#Choices are also invalid if they don’t follow Schelling segregation rules
for i in 0...4 do
choices[i] = nil if !validNeighbor(choices[i])
end

#Returns if no moves are valid
return if choices == [nil,nil,nil,nil]

4

#Looks out as far as vision permits in each of the four cardinal directions
#Stores the adjacent location in that direction, the max sugar quantity, and the distance to the max sugar
for k in 1..@vision do
break if choices[0] == nil
break if @posY+k >= @@env.length
if @@env[@posY+k][@posX].sugarquant > choices[0][1]
choices[0] = [@@env[@posY+1][@posX],@@env[@posY+k][@posX].sugarquant,@vision-k]
end
end
for k in 1..@vision do
break if choices[1] == nil
break if @posY-k < 0
if @@env[@posY-k][@posX].sugarquant > choices[1][1]
choices[1] = [@@env[@posY-1][@posX],@@env[@posY-k][@posX].sugarquant,@vision-k]
end
end
for k in 1..@vision do
break if choices[2] == nil
break if @posX+k >= @@env.length
if @@env[@posX+k][@posX].sugarquant > choices[2][1]
choices[2] = [@@env[@posY][@posX+1],@@env[@posY][@posX+k].sugarquant,@vision-k]
end
end
for k in 1..@vision do
break if choices[3] == nil
break if @posX-k >= @@env.length
if @@env[@posX-k][@posX].sugarquant > choices[3][1]
choices[3] = [@@env[@posY][@posX-1],@@env[@posY][@posX-k].sugarquant,@vision-k]
end
end

#Removes nil choices and sorts
choices = choices.compact
choices.sort! {|x,y| y[1] <=> x[1]}
#Removes locations with less sugar than the best location
while !(choices[-1][1] == choices[0][1] and choices[-1][-1] == choices[0][-1])
choices.pop
end

#Randomly picks a location of the best one or more possible ones
i = rand(choices.length)
return if choices[i][0] == nil
@posX = choices[i][0].posX
@posY = choices[i][0].posY

@@emptylocs.delete([@posY,@posX])
end

population graphing method

def drawPop
$graph.delete(:all)
TkcLine.new($graph,40,40,40,$w-40)
TkcLine.new($graph,40,$w-40,$w-40,$w-40)
TkcText.new($graph,$w/2,30,:text=>"Population levels over time",
:font=>[’Helvetica’,15,’bold’])
TkcText.new($graph,10,$w/2,:text=>"P\no\np\n \nl\ne\nv\ne\nl",
:font=>[’Helvetica’,10,’bold’])
TkcText.new($graph,$w/2,$w-10,:text=>"Time",:font=>[’Helvetica’,10,’bold’])
for n in 1...popLength do
break if getPop[n] == nil
TkcLine.new($graph,50+((n-1)*400/$popLength),
$w-40-($w-100)*getPop[n-1]/maxPop,50+n*400/$popLength,$w-40-($w-100)*getPop[n]/maxPop)
end
TkcOval.new($graph,50+n*400/$popLength-2,$w-40-
($w-100)*getPop[-1]/maxPop-2,50+n*400/$popLength+2,$w-40-($w-100)*getPop[-1]/maxPop+2)
tinit = getStep-getPop.length
TkcText.new($graph,40,$w-30,:text=>"#{tinit}")
TkcText.new($graph,50+n*400/$popLength,$w-30,:text=>"#{getStep}")
TkcText.new($graph,25,60,:text=>"#{maxPop}")
TkcText.new($graph,75+n*400/$popLength-2,
$w-40-($w-100)*getPop[-1]/maxPop,:text=>"#{getPop[-1]}")
TkcText.new($graph,25,$w-40,:text=>"0")
end

Lorenz curve graphing method

def drawWealth
$graph.delete(:all)
TkcLine.new($graph,40,40,40,$w-40,:arrow=>:first)
TkcLine.new($graph,40,$w-40,$w-40,$w-40,:arrow=>:last)
TkcText.new($graph,$w/2,30,:text=>"Wealth Distribution",
:font=>[’Helvetica’,15,’bold’])
TkcText.new($graph,10,$w/2,:text=>"%\n \no\nf\n \nW\ne\na\nl\nt\nh",
:font=>[’Helvetica’,10,’bold’])
TkcText.new($graph,$w/2,$w-10,:text=>"% of Population",
:font=>[’Helvetica’,10,’bold’])

wealths = [0]
totalW = 0

for a in $env.agents do

5

w = a.wealth
totalW += w if w > 0
wealths << w if w > 0
end
wealths.sort!

x = 400.0/(wealths.length-1)
y = 400.0/totalW
dx = 1.0/(wealths.length-1)
dy = 1.0/totalW

giniAr = 0

count = [0,0]
for n in 1...wealths.length do
count = [count[1],count[1]+wealths[n]]
TkcLine.new($graph,40+(n-1)*x,$w-40-count[0]*y,40+n*x,$w-40-count[1]*y)
giniAr += (count[0] + 0.5 * (count[1]-count[0]))*dx*dy
end

TkcText.new($graph,30,$w-30,:text => "0%")
TkcText.new($graph,440,$w-25,:text => "100% (#{$env.agents.length})")
TkcText.new($graph,40,15,:text => "100%")
TkcText.new($graph,40,30,:text => "(#{totalW})")
TkcText.new($graph,150,150,:text=>"Gini coefficient:\n%f" % (1.0-2*giniAr),
:font=>[’Helvetica’,10,’bold’])
end

Appendice B

Graphs

population growth and Schelling segregation

wealth distribution

seasonal migration

6

