
Creation of an Air Traffic Simulation Using Agent Based Modelling

Sam Eberspacher
TJHSST Computer System Lab

2007-2008

May 23, 2008

Abstract

As the skies over the United States become in-
creasingly crowded, airports in the United States
are increasingly stressed to adapt to this increased
demand. The goal of this project is to visually
represent the strain on airports and passengers as a
variety of problems generate record delays. By using
agent based modelling, along with real air traffic
information, this simulation may accurately predict
the proliferation of delays through out airports in
the United States.

1 Introduction

The purpose of this project is to visually represent
the proliferation of a delay throughout a system of
airports. By using techiques such as agent based
modelling, the simulation will predict actual delays
with decent accuracy. Additionally by repeating the
simulation multiple times, the simulation generates
increasingly accurate results as the number of tri-
als approached infinity. While a simulation such as
this would take a human enormous amounts of time,
a computer may be able to run a simulation of 24
hours in a matter of minutes. Due to the scale of the
problem, efficiency will be key for the computer to
run the simulation in a timely matter.

2 Development

2.1 Agent Based Modelling

In order to simulate such a large system, this project
will use a technique known as agent based modelling.
The deveopment of a system using agent based mod-
elling is key for the success of the project. Each agent
must interact with other agents in the system in the
most realistic way possible in order to generate the
most accurate results. One benefit of the agent based
modelling is that parameters for interaction between
agents define the overall behaviour of the system.
This allows the programmer to work on much smaller
problems with the agent in order to alter the overall
system.

2.2 Embedded Statistical Analysis

Embedded statistical analysis is a done when real
time statistics are needed in a simulation. The pro-
gram uses data at each time step to readjust statisti-
cal values for the desired population. These statistics
are useful when determining if the system is able to
handle the introduction of new agents or constraints
such as weather data.

2.3 Geocoding

Geocoding is a process by which a formatted address
such as 6560 Braddock Rd. Alexandria, VA 22312 is
converted to a longitude and latitude. This process is
important when dealing with map information that

1



is displayed on a computer. The computer is un-
able to relate formatted addresses so longitudes and
latitudes are used to generate accurate relationships
about location. This project uses the process to de-
termine the location of each airport and accurately
plot the distance between airports.

2.3.1 Google Geocoder

Geocoding is a complex process which involves a sig-
nificant amount of computing power relative to web
requests. Due to these requirements for geocoding
many companies charge a small fee per request. Al-
ternativeley, there are some companies which offer
geocoding free of charge but wiht limitation on the
number of geocoder requests per day. I found that
Google offered free geocoding with a maximum of
5000 requests per day.

2.3.2 Request formatting

In order to interact with the Google geocoder, each
request was done through an HTTP request sent to
Google servers. These servers then interperet the pa-
rameters in the URL of the request and return the
ouput specified by the user. The parameters in a
request are as follows:

• q - The formatted address to be geocoded

• output - The desired output format (xml, kml,
csv, or json)

• key - Google Maps API key

Sample Request (Key removed for privacy reasons)

http://maps.google.com/maps/geo?q=BWI+airport&output=csv&key=API_KEY

2.4 Software

Computer languages used in this project.

1. Java was used for the bulk of the project includ-
ing all classes and the display of information.

2. Python was used for interacting with the Google
geocoder.

2.5 Procedure

2.5.1 Static Information

To start the project, initial classes were written to
display static information. The Aiport class and Sim-
ulation class were drawn up and coded, leaving room
for additional modifications which would take place
at later stages of development. The first step was
to normalize the data points in an effort to maxim-
imize used space and increase effeciency. A randomly
generated set of coordinates was generated and used
for this part of testing. The normalizing equation for
used in this project is given by the following equa-
tions:

xnorm =
xi − xmin

xrange
· widthscreen

ynorm =
yi − ymin

yrange
· heightscreen

2.5.2 Geocoding

The second stage of the process was to geocode the
airport locations and provide a list of latitudes and
longitudes which would make up the airport map. In
order to make the most robust program possible, a
Python script was written to automate the geocoding
process. The script reads from a list of aiports and
formats an address for geocoding. The script then
sends the HTTP request to the Google geocoder and
parses the returned file. The parsed data is then val-
idated to verfiy that the location is in the United
States and written to a file.

The formatting of the address itself was very im-
portant to the geocoding process. Since the data ab-
otained did not contain street addresses, a straight
address request was not possible. However, it was
determined that using the three letter code for the ad-
dress yielded desirable results. Some airports though,
still failed to meet validations standards (due to con-
flicts with other country codes) so a second format
was needed. The aiport code concatenated with “air-
port” gave the second best results and the Python
code was then optimized to maximimze the number
of valid airports.

2



2.5.3 Waypoints and Collision Detection

Due to the large amount of air traffic which is needed
to create an accurate model, a waypoint system
needed to be implemented to minimize collisions of
aircraft. Initially, each plane sets the next waypoint
to the destination airport, which would be the short-
est travel path. The plane will only modify it’s way-
point stack if a collision is detected and a new way-
point is pushed on to the stack.

The process for deconfliction was based on the algo-
rithm developed by students at the Czech Technical
University and operates as follows: (Logic diagram
goes here)

2.5.4 Path Tracing and Arc Rendering

In order to better visualize the data, both path trac-
ing and arc rendering where included in the program.
Path tracing is a process by which previous locations
of the aircraft remains rendered to the screen. This
allows the user too better visualize where the plane
came from as well as the speed and direction of the
airplane. Arc renderuing supplements path tracing,
by helping the user see where the plane is going. Arc
rendering is done by falsely rendering the location of
the aircraft on the two dimensional viewing plane to
give the illusion of alititude. The progression of the
aircraft is based on an arc from the previous waypoint
to the next waypoint on the stack. This illusion al-
lows the user to better project where the plane will
land.

2.5.5 Embedded Statistics

The implementation of embedded statistics was done
mostly through new variables added to the Airport
class. Due to the statistical properties of the mean
and standard deviation, the mean and standard de-
viation of the whole simulation could be calculated
without polling all of the agents for a second time.
The mean and standard deviation were calculated us-

ing the following formulas.

µ =
n∑

k=1

µ + µk

σ =
n∑

k=1

√
σ2 + σ2

k

3 Results

. . .

References

[1] Koblin, Aaron, cmps. Flight Patterns. Univer-
sity of California at Los Angeles. 21 Nov. 2007
<http://users.design.ucla.edu/ akoblin/work/faa/>.

[2] Tumer, Kagan, and Adrian Agogino, comps.
Distributed Agent-Based Air Traffic Flow Management.
University of Oregon, UCSC, NASA
Ames Research Center. 18 Jan. 2008
<http://web.engr.oregonstate.edu/ ktumer/ktumer-
aamas07.pdf>.

[3] Benson, Kirk C., David Gold-
man, and Amy R. Pritchett, comps.
Applying Statistical Control Techniques to Air Traffic Simulations.
Georgia Institute of Technology. 18 Jan. 2008
<http://portal.acm.org/citation.cfm?id=1161734.1161979>.

[4] ichal Pěchouček and David Šǐslák and
Dušan Pavĺıček and Miroslav Uller
Autonomous agents for air-traffic deconfliction.
Czech Technical University. 30 March 2008
<http://portal.acm.org/citation.cfm?id=1160633.1160925>.

3


