
TJHSST Senior Research Project

Development of a Generic Font OCR

Third Quarter Research Paper

2007-2008

Nathan Harmata

May 23, 2008

Abstract

OCR (Optical Character Recognition) is a very
practical field of Computer Science. Since the late
1980’s, researchers have been developing systems to
identify text from non electronic text sources, like
pictures or papers. The use of OCR systems has
spanned from making books in Braille to sorting
mail by zip code by United States Post Office. This
project describes the development of an entire OCR
system in Java.

Keywords: OCR, Optical Character Recognition,
Image Processing, Computer Vision

1 Introduction

The goal of this project is to create an application
that can read text from electronic picture files. One
of the main focuses will be developing a generic way
to recognize characters of different fonts, rather than
hardcoding in definitions for specific fonts. Although
OCR is by no means a ”new” field, it has still yet
to be fully explored. Many common computer users
either don’t have access to an OCR program or don’t
know they have one, and some of the ones that are
free of charge are lacking in performance and consis-
tancy.

Figure 1: An overview of the OCR process.

2 Background

OCR systems have been around since the late 1980’s.
Still, they are not widely available or used by the
public. The results from a review of the free ones on
the Linux operating system are not very promising.
[?] Although most of them had measured accuracies
above 94 percent, that is not good enough. The one
commercial product tested, Aspire OCR, was accu-
rate only 91.5 percent of the time. The most likely
industry standard, Tesseract, is also one of the old-
est OCR systems. The review measured it to have
an accuracy rate of 99 percent. Development on it
started in 1985 and it is still used as the OCR engine

1



Figure 2: Parsing the word ”JeFfErSoN” into its let-
ters.

for Ocropus, Google’s textual analysis application.
It is unlikely that this project will be able to achieve
similar success, but the goal is have a working OCR
system.

3 Procedures

The OCR system works by accepting an image of
text, and, through a series of parsings and transfor-
mations, is a able to recognize a basic form on each
character. There are two main steps in the OCR pro-
cess, Image Processing and Character Recognition.

3.1 Image Processing

1. Blocks of Text

The input image is not just going to be plain
text in a nice and simple format. The objec-
tive is to get the text into such a form through
a series of parsings. First, paragraphs are rec-
ognized and separated. Then, paragraphs are
broken down into individual lines, and lines into
words. This is all done on the premise that the
image is of computer generated text. This en-
sures that there are straight lines of whitespace
between adjacent paragraphs, lines, words and
words. One key part of the text parsing process
is that the optimal separations are made; para-
graphs, lines, and words are ”boxed” as closely
as possible, to minimize errors.

2. Ch aracter Parsing

Each word is then processed into its individ-
ual letters. Once again, the premise of the ex-
istence of whitespace between adjacent charac-
ters is used. Unfortunately, this isn’t always the
case. In some fonts, there are ”elisions” between
certain letters. To get around this, these eli-
sions have to be recognized and properly han-
dled. This is done by calculating the relative
coverage of pixels between two areas that are ex-
pected to be separate characters. If this is small

Figure 3: An overview of the Attribute class.

enough, the total width of the group of elided
characters is compared to the average width of
other letters in the word. A group of elided char-
acters will be much wider than the average char-
acter. Images of individual characters are then
reboxed to ensure that there is no extraneous
whitespace.

3.2 Character Recognition

Each character image then undergoes a series of
transformations into what are called ”Attributes.”
Attributes of the image are then combined into what
is called a ”Character Model.” A Character Model
serves as a generic character definition. That is, it
defines what the character would be like irrespective
of font. The purpose of this is that each Character
Model can be compared to a pre-generated database
of generic character recognitions for each possible
character, and the best match can be found. So then,
the steps through which each character image goes
are as follows.

3.2.1 Attribute

An Attribute is one specific representation of the im-
age and is used as a comparison heuristic. Each At-
tribute is able to compare itself to other Attributes
of the same type and is able to output its relevant
data. Each Attribute also knows what type of At-
tribute it is. This fact is very important and will be
explained later. In the actual code of this project,
there is an Attribute class which each specified char-
acteristic extends. Currently, this project uses two
Attributes, ”Sector Vector” and ”Gap Vector.”

1. Sector Vector

A Sector Vector consists of three pieces of data:
the number of ”sectors” in the image, the to-
tal number of line segments in the transformed

2



Figure 4: An example of Sector Parsing. The ”A”
is parsing into two sectors: the upper half and the
lower half.

form of the image, and the sign of the slope of
the first such line segment. A sector is defined
as a region of the image that passes the vertical-
line test; that is, for each x-coordinate in the
image, there is at most one y-value. The pur-
pose of parsing the image into sectors is so each
sector can be parsed into line segments. Since
the line segment parsing is based on the slopes
of adjacent pairs of pixels, sectors parsing is nec-
essary. The algorithm of transforming an image
into a Sector Vector consists of two steps, Sector
Parsing and Slope Field Parsing.

(a) Sector Parsing
Starting from the top of the image, the pro-
gram progresses downward until it reaches
a point at which there is a conflict with
the portion of the image already processed
that would cause a failure of the vertical-
line test. This point represents the end of
one sector and the beginning of another.
This process is repeated until the entire im-
age is parsed in sectors. The result is that
each sector is as large as possible, within the
constraints. The important piece of data
gained from this process is the number of
sectors in the image. Each sector is then
parsing into line segments.

(b) Slope Field Parsing
Starting with the left-most pixel in the sec-
tor, the program progresses to the right.
At each x-coordinate, a line segment is
constructed between the pixel at that x-
coordinate and last pixel considered. If the
slope of this line segment is similar, in sign
and magnitude, to the slope of the previous
line segment, then it is incorporated into
the previous by changing the last pixel of

Figure 5: An example of parsing a ”C” into line seg-
ments. The image on the right contains the pixels
which, when connected, form the line segments rep-
resenting this image. Note that the Sector Parsing of
the ”C” is not shown in this diagram.

the previous one to the last pixel of the cur-
rent one. If the slope is radically different,
then a new line segment is constructed. The
results is that the image in transformed into
a collection of line segments. There are two
important pieces of data derived from this
step: the number of line segments and the
sign of the slope of the first line segment in
this sector.

A sample sector vector is:

-2 3

This means that the image contains two sectors,
the sign of the slope of the first line segment
in the first sector is negative, and there are a
total of three line segments. This happens to be
the Sector Vector representation of ”C” for most
fonts.

Interestingly, a similar method of segment pars-
ing was independently developed by two re-
searchers. It does not use a process similar to
Sector Parsing; instead it parses the image into
a set of predefined line segments. [?]

2. Gap Vector

A Gap Vector is simply what, if any, ”gaps”
are present in the image. A gap is defined as
a breakage of pixels on one of the four edges of
the image: top, right, bottom, and/or left. The
purpose of having such a comparison heuristic is
the assertion that gaps are more representative
of a character than line segment parsing. That
is, same characters of different fonts are more

3



Figure 6: The portion of the image circled in red is a
”gap” in the ”C”.

likely to have the same gaps than they are to
have the same Sector Vector. Also, Gap Vector
provides information that is exclusive from the
information given by Sector Vector. The pres-
ence of a gap isn’t likely to have any correlation
to the presence of sectors. Unlike sectors, the
definition for a gap isn’t simple. Both concepts
were invented for the purpose of this project, as
were their working definitions. This project de-
fines a gap using the algorithm by which they
are located.

(a) Corning Finding
The first step in the gap finding process
is to locate the four corners of the image.
Each image is defined to have four corners;
even if it is not visually obvious to a human
that there are four corners, such as is the
case with a letter like ”O,” four corners are
forced on the image. There are four cor-
ners: top left, top right, bottom left, and
bottom right. A corner is defined as the in-
tersection of the path starting from one cor-
responding extremum of the image and the
path starting from the other corresponding
extremum of the image. For example, the
top left corner is the intersection of the path
starting from the bottom left extremum of
the image and the path starting from the
top left extremum of the image. The cor-
ner is, of course, a single point. Therefore
this intersection is the one that occurs when
the path progress towards each other at the
same rate. This process is repeated to find
the locations of the four corners of the im-
age.

(b) Path Tracing
The next step is to use the corners to de-
termine if there are any gaps in the image.

Figure 7: An example of the process of finding the
top left corner of ”A”. The image on the left shows
the path from the bottom in red and the image on
the right shows the path from the top in green.

Between any two adjacent corners lies one
of the sides of the image. Any gap on that
side, by definition, must be between those
corners. The algorithm uses this fact to its
advantage. For each pair of adjacent cor-
ners, it iterates across the straight line be-
tween them. As each point on this line, it
determines if the corresponding point in the
actual image is, in respect to the side of the
image on which the computation is occur-
ing, in front of or behind of the line. For
example, consider finding a gap on the left
side of an image. On the left side, the slope
of the path between the two corners forming
that path, the top left and bottom left, is in
respect to a vertical line. That means that,
for a coordinate on the line (a) and a co-
ordinate on the image (b), a comparison of
the x-coordinates of those coordinates can
be used to determine the relative location
of the coordinate on the image. Since the
left side of the image is being considered,
if the difference between them is positive,
then the one on the image is behind the
one on the line. That is a ”is in front of” b
if:

ax − bx > 0 (1)

The sum of all the distances between the
line and the corresponding points is calcu-
lated, keeping in mind whether the point
was in front of or behind the line. The re-
sult is that if more of the pixels are behind
the line, this sum is negative. That means
that more of the image itself is behind the
line, which implies a gap. This computa-

4



Figure 8: An example of the Path Tracing algorithm
for ”O”. The pixels in red are the ones on the actual
image. The green lines in the left image show the
straight line paths between the adjacent corners. The
areas in green in the right image show the portions of
the image ”in front of” their respective straight line
paths. Since all of these areas are greater than the
areas behind the paths, which happens to be 0 for
”0”, there are no gaps in the image.

tion is actually simply comparing the area
of the part of the image in front of the line
with the area of the image behind the line,
in respect to either a straight line or a hor-
izontal line, whichever is more appropriate.
Thus, a gap exists on a side if there are more
pixels behind the line between the corners
forming that side than in front of it.

The result is a list of gaps, represented by the
strings, ’T’, ’R’, ’B’, and ’L’ for ’Top’, ’Right’,
’Bottom’, and ’Left’, respectively. A sample Gap
Vector is:

R

The means that there is a gap on the right side
of the image, such as is the case for a ’C’.

The importance of each Attribute knowing what
type of Attribute (Sector Vector, Gap Vector) it is,
called its ”description”, is so that different Attribute
representations for an image can be easily grouped to-
gether. This grouping is called a ”Character Model.”

3.2.2 Character Model

A Character Model contains a collection of Attributes
and the processes to use those Attributes for charac-
ter recognition purposes. The Attributes are stored
in a HashMap based on the hashcode of their de-
scription; this is done so that they are always stored
in the same order, making comparisons between like
Attributes easier.

Comparisons are relatively simple; two Character
Models are treated as vectors and the magnitude of
the vector difference between then is calculated. The
”elements” in the ”vectors” are Attributes; therefore
the definition of a difference of Attributes is the result
of the comparison between them defined by their At-
tribute class. Thus, a comparison between Character
Models A and B is:

√√√√ n∑
i=1

(attributeiA.compareTo(attributeiB)) (2)

A Character Model also has a method of out-
putting its important data. It does this by using the
output of its Attributes and their respective descrip-
tions. For example, the Character Model output for
the ”C” image, which has been used as an example,
is:

SectorVector -2 3 GapVector R

Character Models are hashed based on the hash-
code of this output string, much like the hashing pro-
cess for Attributes. This is done to ensure that Char-
acter Models that are identical in respect to their
data have the same hashcode.

3.3 Generic Character Definition
Database

The purpose of all these parsing and transformations
is to get the input image into a generic form. This
form can then be compared, using the methods of
comparison already outlined, with a pre-generated
database of generic forms. Such a database, called
a Generic Character Definition Database (GCDD),

5



Figure 9: An overview of the Character Model class.

is created by performing the analysis procedure on
each character (letters, numbers, and other symbols)
for several fonts and averaging the results, which are
then outputted along with the characters they rep-
resent into a file. This database is handled by the
system using the outputs of the Character Models in
it. Because of this, it is important that the output
includes the Attribute descriptions in addition to the
Attributes data. The system can simply assume that
the first token in the output is the name of a Attribute
class. Using Java Reflections, it can then determine
how many pieces of information are needed for that
Attribute and assume that number of tokens immea-
diately following the first one to be the arguments for
the constructor of such an Attribute.

The program then finds the three best matches for
the image from the GCDD. Using a dictionary refer-
ence, all possible combinations of the letters forming
words are considered. This has been shown to dra-
matically improve OCR accuracy. [?]

4 Testing and Results

There was not enough time to generate new results
for the progess made third quarter. The second quar-
ter results can be referenced if the reader desires to
see them. There was enough time, however, to gen-
erate a working version of the GCDD:

a SectorVector -5 5 GapVector
b GapVector SectorVector 4 3
c SectorVector -2 3 GapVector R
d SectorVector -1 3 GapVector

e SectorVector -2 3 GapVector
f SectorVector 0 3 GapVector R
g SectorVector -1 5 GapVector
h SectorVector 0 1 GapVector
i SectorVector 0 2 GapVector L
j SectorVector 0 4 GapVector
k SectorVector -2 3 GapVector R
l SectorVector 0 1 GapVector
m SectorVector -3 1 GapVector T
n SectorVector -1 1 GapVector
o SectorVector -3 3 GapVector
p GapVector SectorVector 4 3
q SectorVector -1 3 GapVector
r SectorVector 0 1 GapVector R
s SectorVector -2 6 GapVector
t SectorVector 0 3 GapVector
u SectorVector 0 1 GapVector T
v GapVector T SectorVector -2 1
w SectorVector -5 1 GapVector T
x SectorVector -4 3 GapVector T L
y SectorVector -2 3 GapVector T L
z SectorVector 1 4 GapVector L

4.1 Testing Programs

Throughout the development of the system, various
programs were developed to help analyze intermedi-
ate results. The most important one of these ana-
lyzed the working version of the GCDD to determine
the following:

1. The deviation between a Character Model used
to generate the GCDD and the contents of the
GCDD, for each character in the GCDD.

2. How ”close” members of the GCDD are to each
other.

3. For each member of the GCDD, the actual char-
acters who share that member.

Ideally, the value of the first relationship would
be relatively small, and the value of the second re-
lationship would be relatively large, and the value of
the third relationship would be relatively large. This
would mean that character definitions are more dis-
crete; the results are more ”spread out.”

6



4.2 Resources

The following computer languages, algorithms and
programs are being used, in addition to the ones al-
ready described.

1. The OCR system is written entirely in Java.

2. Java’s ImageIO class is used for picture input
and output.

3. Java’s BufferedImage class is ued to handle pic-
tures.

4. KolourPaint is being used to make picture files
for input and to precisely view pictures.

5 Conclusions

A lot of progress has been made since the second it-
eration of the OCR system. The original version was
based off of direct comparisons to a cache, meaning
that only text of the font that was cached could be
read. The current version, however, makes generic
comparisons based off of a database of pregenerated
definitions using the algorithms outlined in this pa-
per.

A GUI will be developed so that the OCR system
can actually be put to use. Users will be able to open
a supported picture file and specify which portion(s)
of the image they want to be ”read.” Methods might
be implemented that can recognize the presence of
text in images so that the user doesn’t have to man-
ually select it. [?] The program will print the text to
a text box from which it can by copied into a text
editor or saved to a text file.

Further work will also have to be done to improve
the current methods for the detection and removal of
noise. There are various methods that can be used
to accomplish this. [?] In addition, there might be a
prelimineray check to ensure that the portion of the
image selected is, in fact, text in the proper orien-
tation. There have already been methods developed
for this purpose. [?] Overall, the successes the cur-
rent version has had shows that, with improvement,
it will be a viable way to implement an OCR system.

References

[1] Austin Acton. A review of free optical character
recognition software, 2007.

[2] Maher Ahmed and Rabab Kreidieh Ward. An ex-
pert system for genral symbol recognition, 1998.

[3] Hrishikesh B. Aradhye. A general method for de-
termining up/down orientation of text in roman
and non-roman scripts, 2004.

[4] Faisal Shafait, Joost van Beusekom, Daniel Key-
sers1, and Thomas M. Breuel. Page frame de-
tection for marginal noise removal from scanned
documents, 2007.

[5] Kazem Taghva, Julie Borsack, and Allen Condit.
An expert system for automatically correcting ocr
output, 1994.

[6] Victor Wu, R. Manmatha, and Edward
M.Riseman. Finding text in images, 1997.

7


