
Computer Systems Research Paper Initial Draft

Using Genetic Algorithms to Optimize the Traveling Salesman

Problem

2007-2008

Ryan Honig

May 23, 2008

1 Abstract

My goal is to create a program that can solve the
Traveling Salesman Problem, finding near-optimal
solutions for any set of points. I will use genetic algo-
rithms to try to find the optimal paths between the
points. In the end, after I create a working alorithm
that will find near optimal paths, I hope to create a
graphic interface that will display the chosen points
and the paths through those points as the algorithm
runs.

2 Purpose

The main purpose of my project is to develop my own
genetic algorithm that can hopefully find close to op-
timal solutions for the Traveling Salesman Problem.
Once this is done I hope to modify the program to
work for asymmetric problems and create a user in-
terface that will graphically display the current prob-
lem and run the algorithm to find a solution.

This is a good problem to tackle because it is fairly
complex and deals both with some complex algo-
rithms and with some higher level math. By find-
ing an efficient and optimal solution to the traveling
salesman problem, it can be applied to the larger NP-
complete field of optimization problems which can
contribute to many fields of study. The TSP has been
around for a long time, but more efficient programs
for solving the TSPs are still being created. Many dif-

ferent algorithms have been used to attempt to solve
TSPs, including heuristics, genetic algorithms, colony
based simulations, and brute force. Heuristics are the
best for finding ’good’, but not optimal, paths fairly
quickly, while genetic algorithms take longer but find
more optimal paths.

The paper: ”New Genetic Local Search Opera-
tors for the Traveling Salesman Problem” by Bernd
Freisleben and Peter Merz details how a good way
to create an algorithm for the Traveling Salesman
Problem is to use a basic heuristic to find the initial
pool of paths and then use the genetic algorithm on
this pool of paths to find a near-optimal solution. I
hope to build off of this approach by creating an al-
gorithm that will work for both symmetric and asym-
metric TSPs. Another approach that is detailed by
Marco Dorigo and Luca Maria Gambardella in ”Ant
Colonies for the Traveling Salesman Problem” is to
use a simulated ant colony to solve a TSP data set.
While this is not the most efficient way of solving a
TSP, it can find very near-optimal solutions. One
of the most interesting articles that I found on the
Traveling Salesman Problem is ”Genetic Algorithms
for the Traveling Salesman Problem: A Review of
Representations and Operators”. This article does a
comparison of the different types of algorithms used
to solve TSPs and their different way of represent-
ing the data. The question that I would like to an-
swer through my project is what combination of al-
gorithms can create the most efficient and optimal

1

traveling salesman program.

3 Development

3.1 Initial algorithm

¡++¿ With my project, I would like to develop an ef-
ficient algorithm that can find near-optimal solutions
for both symmetric and asymmetric traveling sales-
man problems and then incorporate it into a user
interface that will run the algorithm and display the
paths that the algorithm comes up with. My algo-
rithm will be a mix of basic heuristics and the more
complex genetic algorithms.

I began by creating a program that used a
simple genetic algorithm that would reverse a
section of a parent path which would then be
replaced in the pool if it had a shorter path than
the parent. I began testing this with data sets
that can be found here: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/.
After finding that my solutions were off by multiple
powers of ten, I discarded that algorithm and began
a new one.

3.2 Genetic Algorithm

A B

C

D

E

A

A A

A
A

B

B

B

B
B

Combined Path

B
A B

C

D

E

A

A

B

B

Child

A AB B

C C

D D

E E

Parent A Parent B

This new algorithm starts by creating an initial
pool of fifty random, legal paths. For each iteration

of the genetic algorithm it will then select two parent
paths at random to create a child path from. All of
the links between each point on the parent path are
then compiled into one set of links. The program will
then alternate choosing a link from each of the two
parents to create the crossover. If the program gets
stuck on a node and cannot create a legal link from
the parent links, then a greedy algorithm takes over
and completes the broken path.

3.3 Mutation Algorithm

E B F D G A C

R1 R2

E A G D F B C

During second quarter I created a mutation
method. This mutation method keeps the pool from
being populated by the same path, since it has a
chance of changing one of the pools in the path. My
mutation method has a one in fifty chance of occur-
ing. When a mutation does occur, two points are
selected at random on the path, and then the path
in between these two points is reversed. Once my
mutation method was implemented, it significantly
helped my program because it allowed the pool to
continue running even if it got stuck on a single path
that wasn’t anywhere close to the optimal solution.

2

3.4 Pool Generating Heuristic

A B

C

D

E

A

A BA

E

A B

C

A B

D

A

D

E

A B

E

Initial In Order Path

During second quarter, I also created a heuristic
to generate the initial pool of paths. I created the
heuristic, hoping that it would produce better results
by starting with a pool that isn’t random and it might
even be faster. The heuristic I devised will first pick
a random point out of all of the points the salesman
must travel to. It then finds which two other points
are the closest to that point and begins two paths
starting at the first point, and going to each of the
other two points. Then, for each of those two points,
it finds the next two closest points, and creates two
more new paths, thus doubling the number of paths
being made. It continues doing this until there are
enough points to fill the pool, at which point it will
just continue by picking the next closest point, until
a full traverse of the points is acheived. I will discuss
how this heuristic did in my results section.

4 Results and Discussion

After testing my initial algorithm that reversed sec-
tions of the paths, I was not surprised to find that
my solutions to data sets were multiple powers of ten
off from the best known solutions. I knew that since
my initial algorithm was based off of single parent
genetics, it would not work very well.

I then created the genetic algorithm that I am cur-

rently using. When I first began testing this algo-
rithm, my program would often fill up its pool with
copies of the same path, which would prevent it from
finding a solution any better than that one. In order
to correct this I implemented a mutation method to
free up the pool. This worked and my program ran
pretty well. Using data set a280 from the TSPLIB
website, the best solution that my program came up
with was 2608.837612, which has an error of just 1.16
percent from the best known solution of 2579, with
an average running time of about 2.15 seconds. Us-
ing the att48 data set, my programs best solution was
10820.248365, which has an error of just 1.81 percent
from the best known solution of 10628, with an aver-
age running time of 3.52 seconds.

I then created my heuristic, hoping that it would
produce better results by starting with a pool that
isn’t random, and possibly even be faster. When
testing the heuristic program with the same data
sets that I used to test the program with the ran-
domly generated pool, I found that the solutions were
slightly better, but the program took mush longer to
run. Using data set a280, the best solution that my
program came up with was 2597.401845, which has
an error of just .72 percent from the best known solu-
tion of 2579, with an average running time of about
5.03 seconds. Using the att48 data set, my programs
best solution was 10751.542837, which has an error
of just 1.16 percent from the best known solution
of 10628, with an average running time of 7.31 sec-
onds. Currently, I am not sure whether I should con-
tinue working with my heuristic program or with my
randomly generated pool program, because although
the heuristic program is slightly better, it takes much
more time to run.

5 Bibliography

—Dorigo, Marco and Gambardella, Luca Maria.
”Ant colonies for the Traveling Salesman Problem”.
http://code.ulb.ac.be/dbfiles/DorGam1997bio.pdf

—Freisleben, Bernd and Merz, Peter. ”New
Genetic Local Search Operators for the Travel-
ing Salesman Problem”. http://www.rfai.li.univ-
tours.fr/pagesperso/rousselle/docum/pdf/ppsn96.pdf

3

—Larranaga, P., Kuijpers, C.M.H., Murga,
R.H., Inza, I., and Dizdarevic, S. ”Genetic Al-
gorithms for the Travelling Salesman Problem:
A Review of Representations and Operators”.
http://wedhusprucul.tripod.com/skripsi/tsp.pdf

—University of Heidelberg Department of Com-
puter Science. ”TSPLIB”. http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

—Voudouris, Christos. ”Guided Local Search and
Its Application to the Traveling Salesman Problem”.
http://www.cs.essex.ac.uk/CSP/papers/VouTsa-
GlsTsP-Ejor98.pdf

6 Appendices

6.1 An Overview of the Traveling
Salesman Problem

The Traveling Salesman Problem is a problem in
which a set of points is given and you want to find the
shortest path that travels between each point once
and then returns to the starting point. A symmetric
problem is one in which the distance between towns
A and B is the same as the distance between towns B
and A. An Asymmetric problem is one in which the
distance between towns A and B is different from the
distance between towns B and A.

6.2 What is a Genetic Algorithm?

A Genetic Algorithm is a process for an algorithm
that simulated genetics. First a pool of solutions is
generated. Then for each generation of the program
that is run, 2 of the solutions in the pool are chosen at
random. These two solutions are then somehow com-
bined to create a child solution. A fitness function is
then used to determine whether the child solution is
better than other solutions in the pool. If it is, then
it will replace a solution in the pool. This process
continues for many generations, until an optimal so-
lution is found.

4

