
TJHSST Computer Systems Lab Senior Research Project

Virtual PacMan

2007-2008

Brett Jones

May 23, 2008

Abstract

The field of 3D computer graphics has been explored
quite extensively, and comprises of three major parts:
3D modeling, animation, and 3D rendering. The first
part, 3D modeling, refers to creating a 3D represen-
tation of an object. Animation, the second part, is
moving the object through time. The final part, 3D
rendering, is drawing the animated 3D model to the
screen. The purpose of this project is to create a
3D, first-person version of the classic PacMan arcade
game in order to learn more about the concepts of
3D graphics programming and rendering algorithms.
The project will also include a basic AI to control the
ghosts, and the 3D rendering will be left to the native
Java3D renderer.

: Keywords: 3D graphics, rendering algorithms,
AI

1 Introduction

1.1 Scope of Study

The program, for the purposes of this project, will
only consist of the core of the game; i.e., the pro-
gram will only have the visual display (with control
inputs) and a basic AI for controlling the ghosts. The
functions such as save/load game, sound, customiz-
ing controls, high scores, etc. will be absent from the
project unless time permits the inclusion of these fea-
tures; the 3D graphics is the main focus of the project
and thus has top priority.

1.2 Type of Research

This project is pure applied research.

2 Background

Computer graphics is the science of creating virtual
representations of objects with computers. 3D com-
puter graphics is a subset of this field, and specifically
involves representing three-dimensional scenes with a
computer. The field involves modeling (creating the
virtual 3D objects), animation (the movement of the
models through time), and rendering (projecting the
3D scene onto a 2D screen), as well as mathemat-
ics, notably matrix algebra. The animation aspect of
3D computer graphics is where much of the math is
used, as animations are generally created by applying
matrix transformations to a collection of the scene’s
vertices. Rendering relies more on geometry, both be-
cause a 3D scene must be projected onto a 2D screen
and because some rendering algorithms depend on or
restrict the geometry of the scene. For example, ray
casting, a subset of ray tracing, requires right angles
- walls, for example, must be perpendicular to the
plane of the eye. Ray tracing does not have this re-
striction, nor does polygon modeling (also known as
rasterization). These two algorithms create very re-
alistic representations of scenes; ray tracing is more
realistic (in both the method of implementation as
well as the resulting image), but it is considerably
more computationally expensive and is thus uncom-
mon for realtime rendering. This project will use the

1



native Java3D renderer, which uses a rasterization
algorithm.

3 Progress

Currently, the program is coded to run in fullscreen
exclusive mode (FSEM) in order to display the game
over the entire screen. The program runs without er-
rors and displays the scene objects, and the view can
be rotated. The menu consists of a title image and
seven function buttons: New Game, Control, Sound,
Save Game, Load Game, High Scores, and Quit. Quit
exits the program, New Game creates an instance of
the World class (which extends Frame) and sets the
program to run in FSEM with the World class as
the viewable display, and the other buttons do not
have any coded functionality. The program displays
a black background with randomly shaded blue cubes
(the wall objects) connected in the fashion of con-
tiguous walls, and accepts keyboard input for mo-
tion and returning to the main menu. The move
method currently generates runtime errors, but the
turnLeft and turnRight methods work appropriately.

4 Procedures and Methodol-
ogy

The program will be coded with Java and Java3D
using the jGRASP compiler. The main focus of
the project will be the 3D graphics portion, which
hopefully can be completed with the ray tracing
algorithm. Afterwards, coding the AI for the

ghosts will commence, and once the AI is com-
plete, most of the remaining programming time
will be devoted to optimization/debugging, with
the addition of the extra features of a game men-
tioned above if time permits. Visuals of the
project will consist primarily of in-game screenshots.

The best test of the program is playing the game.
Bugs that manifest themselves in the visible part of
the program (such as ghosts moving through walls,
walls in the wrong place, etc.) will become apparent
by playing the game. Playing the game also provides
a general idea for the runtime speed as well, as the
game will be noticeably laggy if the code isn’t efficient
enough. Another method for testing the efficiency of
the code is the ”time” function of the Linux Bash
terminal. This function accepts a command as an
argument (in this case, a call to the Java Virtual
Machine to run the program) and reports the total,
user, CPU, and system times spent on the program.
The CPU time represents the processing time of the
program, a key indicator of efficiency (high numbers
here are not good); the user time represents how long
the program was waiting for user input; the system
time represents how long the computer spent waiting
to run the program (a number that should only be
significant when many other programs are running on
the same system); and the total time is the sum of
the user, system, and CPU times.

4.1 System Requirements:

Operating System: Windows, Linux, or Solaris
CPU: TBA

2



RAM: TBA
Graphics Card: OpenGL 2.0 compatible graphics
renderer
HDD Space: TBA

4.2 References:

http://www.vrupl.evl.uic.edu/LabAccidents/
java3d/lesson06/indexb.html

-A Java3D tutorial dealing with the Appearance
object.
http://benmoxon.info/Java3d/index.htm

-A general Java3D tutorial.
http://www.cs.mu.oz.au/380/project/
Patricks_java3d_tute/tutorial.html

-Another general Java3D tutorial.
http://www.few.vu.nl/~kielmann/theses/
avdploeg.pdf

-A research paper about the viability of raytracing
in realtime programming.
http://graphics.cs.uni-sb.de/~jofis/Arbeit/
GI04-MWZC-RayTracing.pdf

-A research paper about raytracing, with real-
world examples of the algorithm using Quake 3 and
a program built from scratch.
http://graphics.cs.brown.edu/games/quake/
quake3.html

-A description of how iD Software, Inc. coded the
BSP file format for Quake 3 maps.

3


