
Pathfinding
Algorithms for

Mutating Graphs

Haitao Mao

Computer Systems Lab 2007-2008

1 Abstract

Consider a map of an unknown place represented
as a graph, where vertices represent landmarks and
edges represent connections between landmarks. You
have current information on whether each edge is
traversible, as well past data about the availability
of each connection. You have a preset destination
that you want to reach as fast as possible. Pathfind-
ing algorithms for static graphs involve computing
the whole path from start to destination, but if the
graph is rapidly changing, say due to some extreme
environmental condition, then calculating the whole
path in the beginning will not be feasible. The pur-
pose of this project is to design and compare differ-
ent pathfinding algorithms for a graph whose struc-
ture mutates to a significant extent. Algorithms may
involve probabilistic theory, dynamic programming,
heuristics, genetic programming, and variations of
standard shortest-path algorithms such as Dijkstra’s
algorithm.

2 Introduction

The problem statement is as follows: given an
initial graph structure of a mutating graph, a start
vertex, an end vertex, and an edge history for every
pair of vertices, develop an algorithm to travel from
the start vertex to the end vertex. The mutating
graph will be implemented in timesteps. After each
move, each edge will either stay the same or be tog-
gled by some random function of the current state of
the graph. The plan is to create a sturdy algorithm
for the general case of the problem, as well as vari-
ations for specific cases where the main algorithm
would not be as effective. Algorithms will be com-
pared and analyzed to determine the circumstances
for which each one is best. This project will involve
both theory and actual programming.

3 Background Literature

There are little to no studies available concern-
ing mutating graphs, so research has been focused
on graph theory in general as well as the more spe-
cific topic of dynamic graphs, which may change in
structure. General shortest path and flow algorithms
have been reviewed. Dynamic graph algorithms and
query/update algorithms have been reviewed lightly.
The results from this project are expected to be com-
pletely new and original.

1



4 Theory and Algorithms

Define randomized distance as the distance to des-
tination node taking the possibility of graph mutation
into account. For example, a vertex with two unit
length paths leading to the destination will be closer
in this sense than a vertex with only one. We use
steady-state convergence and methods from numeri-
cal analysis to set up a system of equations we want
the randomized distances to satisfy, and solve the sys-
tem. We use dynamic programming to approximate
distance to heuristically closer points first, then base
calculations for farther vertices on these approxima-
tions. We use the previous states of the graph: we can
use this data to develop a hashmap to approximate
future mutations. The hashmap stores each mutat-
ing as a mapping from the original state to the new
state, and then calculates the probability of toggling
states. Then, that probability is used to calculate the
probability that an edge will exist in any number of
timesteps. We use genetic programming to find op-
timal values for algorithm-specific variables, such as
probability estimate multipliers and heuristic func-
tions. We focus on sparse graphs, graphs where the
number of edges is significantly less than the square
of the number of vertices. The edge weights are lim-
ited to positive doubles so mutation will be somewhat
controlled; edge weights that are too large will never
be traversed anyway.

Currently, the first algorithm proceeds chronolog-
ically, then for each vertex, it calculates the optimal
vertex in the previous time step that could have led
to this vertex. It uses the history hash map to predict
the graph structure at that timestep, and uses an ap-
proximation error to weight lower timesteps. Then,
it backtracks to find the best vertex after the first
timestep to visit. This is the main body of the work-
ing java implementation of this algorithm:

for(int v=0; v<vertices; v++) prevvals[v] = inf;
prevvals[curvertex] = 0;
for(int t=0; t<tlimit; t++)
{
for(int v=0; v<vertices; v++)
{
curvals[v] = inf;
for(int e=0; e<adjlist[v].size(); e++)
{
Edge E = (Edge)adjlist[v].get(e);
if(prevvals[E.getVertex(v)]>=inf) continue;
double x = globhist.predictMutations(E.getWeight(),t)

+ prevvals[E.getVertex(v)];
if(x<curvals[v])
{
curvals[v] = x;

bestprev[v][t] = E;
}
}
}
for(int v=0; v<vertices; v++)
prevvals[v] = curvals[v];
if(curvals[vend]<inf)
{
if(curvals[vend]<bestend||bestend<0)
{
bestendtime = t;
bestend = curvals[vend];
}
}
else if(t==tlimit-1) System.out.println("Time limit is

insufficient for the width of this graph");
}
int btrack = vend;
for(int t=bestendtime; t>0; t--)
{
System.out.println(t + " " + btrack);
btrack = bestprev[btrack][t].getVertex(btrack);
}
return bestprev[btrack][0];

By this point, there are several major algorithms
working. The preliminary algorithms include taking
a greedy at each step, and running a Dijkstra at each
step. These algorithms do not take mutation into
account, so they run pretty poorly and are used as a
measure of how effective other algorithms are.

The first major algorithm consists of many inde-
pendent parts. In the beginning, the algorithm makes
a history of all the mutations and determines the
probability of each mutation occurring. The history
is its own data structure. Then, at each timestep,
a dynamic programming approach takes the shortest
path to that step using previous stored results and
the predicted distance of the edge, which is just the
probability that the edge will exist at that timestep.
We are computing distance from our destination here,
so that at the end, we can look at all the vertices con-
nected to our starting vertex and see which one has
the least distance. Note that here, we must also take
into account the starting vertex itself, because the
pathfinder can decide to not move anywhere.

The main problem with the first algorithm is
that instead of doing any probabilistic calculation,
you just approximate everything as the mean. This
is suboptimal because it is not just an entirely accu-
rate computation, but it comes pretty close, so it’s
actually quite difficult to improve upon. In the av-
erage case, this algorithm will do relatively well, and
should be sufficient if coding time is of any concern.

The next algorithm tries to remedy the flaw of

2



the first algorithm by introducing a concept of ran-
domized distance. This is basically a distance func-
tion of an edge that takes mutation into account. It
is not clear how to best define this function, but we
must take into account various properties. For one, it
should return something at least one. Secondly, disre-
garding other paths, the more likely it is for a length
one path to exist between two vertices, the lower the
randomized distance should be. Also, obviously the
randomized distance should not be dependent on the
timestep. It should be dependent on the structure
of the graph and the mutation rates of the edges.
Finally, the randomized distance should satisfy the
triangle inequality. Our randomized distance should
be a metric, but this classification won’t really help
us much.

As a heuristic for randomized distance, we can
either try to make the complexity in terms of num-
ber of vertices or number of edges. The second al-
gorithm consdiers each edge, so it is pretty accurate.
The third algorithm only considers the vertices in its
heuristic, so it it significantly faster than the second
algorithm, but it should also run worse than the sec-
ond algorithm.

5 Testing

The testing interface as well as the algorithms
themselves will be written in Java. Since graphs are
difficult to develop graphics for, output will be lim-
ited to textual lists and charts. Testing will be done
by generating graph structures and initial weights
and devising a system for the random edge weight
mutation. Then, repeated simulations will be run
and the algorithms will be scored based on their per-
formance for various types of starting parameters.

First, the algorithms will be tested for functional-
ity and stability by examining its pathfinding in the
interface and seeing if it behaves as expected. Then,
algorithms will be tested for efficiency through ran-
dom and user-specified initial states. Algorithms will
be compared based on how fast they can find their
destination, runtime complexity, and memory usage.
If the algorithms take parameters, then genetic al-
gorithms can be used to find optimal values for the
parameters.

Second quarter was devoted solely to building al-
gorithms and developing theory for solving the prob-
lem. Third quarter, I started actually testing my pro-
grams. For preliminary testing, I compared the ac-
curacy of the programs against each other. I ran the
Dijkstra which does not implement mutation stuff,
and it did not run too well as expected. Then I ran

the first algorithm, then the second, then the third.
Here is some average data:

Dijkstra(no mutation):
small case: size 13
avg 5.75 turns to reach end
large case: size 500
avg 46.34 turns to reach end

first algorithm(most basic):
small case: size 13
avg 4.32 turns to reach end
large case: size 500
avg 28.46 turns to reach end

second algorithm:
small case: size 13
avg 4.25 turns to reach end
large case: size 500
avg 24.09 turns to reach end

third algorithm:
small case: size 13
avg 4.07 turns to reach end
large case: size 500
avg 25.95 turns to reach end

6 Expected Results

Results will consist of the efficiency, complexity,
and stability of the algorithms tested. Results will
be presented in charts, data tables, qualitative state-
ments, and possibly graphics. Applications of the re-
sults are undetermined as this point, since this is not
a commonly trod subfield of graph theory. Robots
may be able to apply the algorithms in natural or
man-modeled environments. The graph may be able
to simulate a transportation network in order to find
paths for pioneers. The randomly mutating edge
weights may represent an unknown cause of change
in an environment, even if there is a systematic pat-
tern to the change. The factor may simply be too
complex to model exactly and would be better ap-
proximated by a random variable. The project may
be useful for applications further into the future, or
may spark further development in the area which will
lead to results that may be put into practice.

3



7 Literature Cited

References

[1] D. Frigoni, M. Ioffreda, U. Nanni, G.
Pasqualbne, ”Experimental Analysis
of Dynamic Algorithms for the Single
Source Shortest Paths Problem”, 2000.
http://www.acm.org/jea/TURING/Vol3Nbr5.pdf.

[2] C. Demetrescu, G. F. Italiano, ”Algorithmic
Techniques for Maintaining Shortest Routes in
Dynamic Networks”, 2006.

[3] U. Meyer, ”Average-case Complexity of Single-
Source Shortest-Paths Algorithms: Lower and
Upper Bounds”, 2001.

4


