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Abstract

Neural networks have been utilized in a wide va-
riety of fields. Extensive research relating to the
application of neural networks in computational
biology has been done, but the validity of these
biological models has yet to be established. Models
of the auditory cortex serve as examples of this
problem; in these models, the properties of artificial
neuronal populations are hard to fully characterize
with traditional methods such as tuning curves.
Spectro-temporal receptive fields (STRFs) are able
to characterize neurons in both the spectral and
temporal domains, giving them greater power to
analyze the properties of neural networks. STRFs
have been obtained in a variety of animals, but
have not been adequately studied in computational
models. The aim of this project is to generate
STRFs on a basic neural network model of the
early auditory processing stages in the brain. The
characteristics of the STRFs obtained from this
present neural network are remarkably similar to
those from the biological system and reveal some of
the processing that takes place in the auditory cortex.
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1 Introduction

Recent computational models have employed a neu-
ral network architecture to mimic the processing that
occurs in the brain. Although many of these models
revealed how well we understand the brain, verify-
ing the biological realism remains difficult. In this
project, I discuss the use of receptive fields in a neural
network and application of receptive fields to assess
the validity of computational models.

The brain is a remarkably complex organ that is
responsible for the intricate processing of tactile and

abstract information. The hominine capability of
sight has already been widely studied and well docu-
mented in research and modeling. Yet our knowledge
of auditory processing in the brain is surprisingly lim-
ited. Realistic models of the auditory cortex will give
researchers the tools to better understand and mimic
the brain’s diverse functions in artificial systems.

Spectro-temporal receptive fields (STRFs) are vi-
sual descriptions of the linear properties of audi-
tory neuronal populations. STRFs accurately de-
scribe both the spectral (frequency) and temporal
(time) components of neuronal responses. With re-
ceptive fields, computational models can be studied
in greater detail. The computer-generated STRFs are
hypothesized to be able to evaluate the realism of au-
ditory processing models of the brain. To this effect,
I have employed the use of a newly developed, neural
network model of the brain as the preferred way to
model early auditory processing stages and generate
STRFs. The model uses a simple representation of
memory to approximate temporal processing in the
auditory cortex. The connection factors, or weights,
between different neurons determine how the neurons
respond to auditory stimuli. These weights were fash-
ioned through an unsupervised training algorithm us-
ing a training set composed of frequency-modulated
(FM) sweeps and pure tones. Using this training
procedure, the neural network extracted some of the
statistical regularities from the training set . Subse-
quently, complex, moving ripple stimuli were used in
the model to obtain the receptive fields of the neu-
ronal population.

The resulting receptive fields illustrate the prop-
erties of the neural network. By analyzing STRFs,
the validity of the computational model can be deter-
mined. These receptive fields can also be compared
against the tuning curves to investigate the quality
of the information each method illustrates.

As researchers strive to develop ever more realis-
tic, computational models of the brain, the detail
and elegance of receptive fields will equip researchers
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Figure 1: Biological STRF from a Mexican free-tailed bat with inhibition blocked. The red represents the area with maximum
neuronal activity. See References for source of image?

to better evaluate the models against their biological
counterparts.

2 Background

2.1 Layout of the ear

The ear is the earliest stage of auditory processing.
The ear is divided into three main areas: the outer
ear, the middle ear, and the inner ear. The general
purpose of the outer and middle ear is to convey and
amplify the mechanical vibrations in the air (sound)
to the inner ear. Transduction, the process of con-
verting mechanical signals into electrical potentials,
takes place in the inner ear? . The vibrations in the
inner ear selectively cause hair cells along the basi-
lar membrane in the cochlea to move? . The mo-
tion of the hair cells allows electrical potentials to
travel to the auditory nerve and become processed by
the brain. Hair cells are theorized to be frequency-
selective. Specific pitches excite specific areas of the
basilar membrane, information which is relayed to the
cortical levels of auditory processing? .

2.2 Oja’s rule

Unsupervised learning paradigms allow neural net-
work models to dynamically modify their own
weighted connections between nodes, analogous to
the changes in synaptic plasticity between neurons
? . The simplest form of unsupervised training is
based on the Hebbian learning rule? . Hebb hypoth-
esized that if two neurons are simultaneously active,
the connection between them would be strengthened
? . As a mathematical equation, Hebb’s rule can be

represented as:

∆twij = εxiyj (1)

where ∆twij represents weight change between two
units, ε is the learning rate, and xi and yj are the ac-
tivation values of the pre-synaptic and post-synaptic
neurons, respectively? . Hebb’s rule is a concise, al-
beit very limited, simplification of the synaptic plas-
ticity of neurons.

Hebb’s rule is inherently unstable. One overwhelm-
ing problem with Hebb’s rule is that the weights di-
verge to infinity after repeated iterations? . Oja’s
rule, a modified version of Hebb’s rule, fixes this prob-
lem by subtracting a portion of the existing weight
away from the weight change? . Oja’s rule can be
shown as:

∆twij = ε(xiyj − y2
j wij) (2)

where ∆twij represents weight change between two
units, wij is the current weight, ε is the learning rate,
and xi and yj are the activation values of the pre-
synaptic and post-synaptic neurons, respectively? ? .
The learning rate is a key parameter that dictates
how quickly the weights are updated. While a very
small learning rate will cause the weights to change
slowly over the training set, a sufficiently large learn-
ing rate will cause the weights to oscillate. In this
project, the learning rate was first set at 0.015 and
then further decreased in order to avoid these two
issues.

2.3 Spectro-temporal receptive fields
(STRFs)

STRFs represent the linear properties of primary au-
ditory processing neurons and depict the neuronal
impulse response characterizations at frequency-time
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Figure 2: Single artificial neuron of neural network. Each artificial neuron in the second layer is connected to three timesteps:
the current timestep (t), timestep from 24 ms ago (t − α), and timestep from 48 ms ago (t − β). The weights between these
timesteps and the artificial neuron were trained with Oja’s Rule.

points? ? ? ? ? ? ? . STRFs are generated by collect-
ing a neuron’s responses to different moving ripple
stimuli. Since these stimuli are approximate com-
ponents of complex sounds, the STRFs characterize
the neuron response to spectro-temporally rich sound
stimuli? ? . Figure 1 shows an image of a biological
STRF from Mexican free-tailed bats.

Since STRFs describe the neuronal responses in
both the spectral and temporal dimensions, they
are hypothesized to be more useful than traditional
methods of describing neurons such as tuning curves.
Tuning curves only depict a neuron’s spectral prop-
erty. STRFs have been used to predict the outputs
of neurons, further illustrating the utility of receptive
fields in the auditory world? ? ? .

3 Methods

3.1 Neural network

Neural networks mimic biological processing by join-
ing layers of artificial neurons in a meaningful way.
While real neurons rely on neurotransmitter com-
munication, the artificial neurons in neural networks
transfer information through weighted connections.
The neural network employed in this project is a
two-layer model that responds to sound stimuli. The
input to the model is a spectrogram, frequency vs.

time distribution of sound, in order to account for
frequency-selectivity in the basilar membrane. The
spectrogram is split into distinct time and frequency
intervals, where each time interval represents 12 ms
of auditory information and each frequency interval
represents a 43 Hz range of the auditory stimulus.
Each distinct time interval is known as a timestep.

This model utilizes time-delayed inputs to respond
to different timesteps of the auditory stimulus. The
first layer of the neural network contains the informa-
tion from a timestep (t), the previous timestep from
12 ms ago (t − α), and the previous timestep from
24 ms ago (t− β). Each of these timesteps composes
the entire first layer, which becomes 387 units long
(three timesteps each of 129 units).

The second layer of the neural network is the out-
put layer. The auditory information gets relayed to
the second layer through a network of connection fac-
tors. These connections are weighted so that some
parts of the input contribute to the overall output
more than other parts. The value of a second layer
artificial neuron can be summarized in the following
equation:

yj =
129∑
i=1

wijxi +
129∑
i=1

w(i−α)jxi−α +
129∑
i=1

w(i−β)jxi−β

(3)
where w is the weight matrix, xi is the input from the
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current timestep, xi−α is the input from the timestep
that appeared 12 ms ago, and xi−β is the input from
the timestep that appeared 24 ms ago.

Using this configuration, the neural network was
trained using Oja’s rule. The weights between the
first and second layers of the model were originally set
at zero-centered, normally distributed, random val-
ues. Though the weight values become modified by
training using Oja’s Rule, the connections between
the artificial neurons are neither created nor elimi-
nated. Each artificial neuron in the second layer is
permanently connected to a set of input units.

Animals can only hear a very limited range of fre-
quencies. In this project, neural network artificially
simulates a limited range of hearing to more accu-
rately match the real world. The model is restricted
to frequencies between 172 and 5512 Hz by removing
any weighted connections between the second layer
and the first four frequency bins of a timestep. See
Figure 2 for a schematic of the network.

3.2 Unsupervised training

The neural network was trained on a simple set of
frequency-modulated (FM) sweeps and pure tones.
Each training stimulus consisted of either an up-
sweep, pure tones, or downsweep. Each upsweep
had an initial frequency between 0.17 and 2.250 kHz.
Each pure tone had an initial frequency between 2.27
and 3.43 kHz. Each downsweep had an initial fre-
quency between 3.45 and 5.51 kHz. This training set
was sampled at a rate of 11.025 kHz. According to
the Nyquist-Shannon Sampling Theorem, a sampling
rate of 11025 Hz reduces the maximum possible fre-
quency to 5.512 kHz? .

Afterwards, these stimuli were converted into spec-
trogram matrices (frequency vs. time) and scaled be-
tween 0 and 1 in Matlab? . These matrices served as
the input training data to the neural network. The
training set was presented to the neural network in
a random order. After each presentation of a sin-
gle timestep, the model modified its own weights ac-
cording to Oja’s rule. Only one or two artificial neu-
rons were trained at one time because most of the
frequency-time space of the spectrogram is empty,
and the model would be mostly trained on an empty
stimulus. The initial frequency of the training stimu-
lus determined which artificial neurons were trained.
After 50 iterations through the training set, the learn-
ing rate was decreased by a factor of 2 to prevent the
weights from oscillating around a value. The learn-

ing rate was decreased 12 times, so the model iterated
through the training set of 275 spectrograms a total
of 600 times. The weights were saved for further use.

3.3 Constructing stimuli

3.3.1 Moving ripples

The moving ripple stimuli are complex, broadband
noises that are used to determine the spectro-
temporal receptive fields (STRFs) of artificial neu-
ronal populations? ? ? ? ? ? ? . The moving ripples
are composed of hundreds of densely packed pure
tones log-spaced between 0.975 to 5.512 kHz that
were sinusoidally modulated in both the spectral and
temporal domains. The ripple equation, intensity at
specific frequency-time points, is given as:

S(t, x) = 1 + ∆A× sin[2π(ωt + Ωx) + Φ] (4)

where S(t, x) is intensity, t is time, x = log2(F/F0)
where x is the logarithmic frequency axis, F0 is the
baseline frequency, F is the frequency, ∆A is modu-
lation depth, ω is the ripple velocity (Hz), Ω is the
ripple frequency (cycles/octave), and Φ is the phase
shift (radians)? ? ? ? ? . The stimuli were generated
using a Matlab script? .

These ripple stimuli were varied across two parame-
ters separately, the ripple velocity (Hz) and the ripple
frequency (cycles/octave). The ripple velocity was
varied from -40 to 0 Hz in steps of 2 Hz and the rip-
ple frequency was varied from 0.0 to 4.0 in steps of 0.4
cycles/octave. In total, 231 ripple stimuli were used
to obtain the spectro-temporal receptive fields. See
Figure 3 for four representative spectrograms of the
ripple stimuli set. The other parameters were held
constant for all ripple stimuli.

The output of the neural network units to the dif-
ferent moving ripples were computed. The transfer
function (TF) can be created from the artificial neu-
ronal responses. The TF is a broad characterization
of a unit’s responses to the ripple stimuli and is de-
fined by:

TF (ω, Ω) = M(ω, Ω)× exp[i× Φ(ω, Ω)] (5)

where i =
√
−1, Φ(ω, Ω) is the response phase (radi-

ans), and M(ω, Ω) is the response magnitude? . In
order to construct the TF, the magnitude and phase
of the raster responses were calculated by performing
a Fourier transform. The magnitude was the max-
imum value of the first half of the transform, and
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Figure 3: Four ripple stimuli. The ripples in this figure are varied across ω with Ω held constant at 1.0 cycles/octave. Positive
ω corresponds to downward moving ripples. These stimuli were used to generate the receptive fields of the artificial neurons.

the phase was extracted from the unwrapped angle
at that point. The first two values of the Fourier
transform were discarded because each neuronal re-
sponse contained the low frequencies represented by
the first two values of the transform. Also, the second
half of the Fourier transform was discarded because
it provides redundant information.

A two-dimensional inverse Fourier transform func-
tion was performed on the transfer function in or-
der to generate the desired STRF? ? ? ? . Before
the transformation, the transfer function was padded
with zeros to smooth the resulting receptive field.

3.3.2 Tuning curve tones

Tuning curves have been used extensively in both bio-
logical and computational applications because they
allow researchers to quantitatively analyze the fre-
quencies at which a specific auditory neuron responds
best to. To generate these curves, the firing rates of
the neurons are collected in response to pure tones
varied across the frequency domain? . The neurons
respond with the greatest intensity to tones that
match their best frequency (BF) and with decreas-

ing intensity to tones away from their BF. The plots
of these rates against the frequency of tone generate
the tuning curves.

In this project, the tones that were used to con-
struct the tuning curves were generated in Matlab.
These tones were 1 second long, and sampled at iden-
tical settings to the training set, and were subse-
quently converted to spectrograms to become the in-
put of the neural network. The frequencies of the
tones were varied from 10 to 5490 Hz in steps of 40
Hz. The responses of the artificial neurons to these
tones were collected. The maximum response to each
tone was plotted in a intensity vs. frequency plot,
and the peak of the plotted curve denotes the BF of
the artificial neuron.

4 Results

4.1 Receptive fields

The receptive fields for the six different artificial neu-
rons are plotted in Figure 4. The abscissa represents
time after stimulus onset and the ordinate represents
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Figure 4: Spectro-temporal receptive fields (STRFS) from neural network. The STRFs from the artificial neurons (AN)
demonstrate frequency selectivity. The width of the area of activation depicts the temporal properties of the artificial neuron.
The black line illustrates the angle of the receptive field.

frequency. The red areas of the graph shows where
the artificial neuron responds with greatest intensity.
The blue areas shows where the artificial neuron does
not respond to, or responds very weakly to. The
graphs show that the artificial neurons are responding
to distinct frequency ranges. For instance, the STRF
for AN 1 shows that the second artificial neuron re-
sponds strongly to a frequency of 877 Hz. As the
artificial neurons are connected to higher frequency
input units, the receptive fields show that the artifi-
cial neuron also responds to higher frequencies. This
result agrees with the hypothesized outcome.

To quantitatively analyze the frequency properties
of the artificial neuron, the best frequency (BF) can
be obtained from the STRFs. The spectral compo-
nent of the maximum value of the STRF represents
the frequency at which an artificial neuron responds

best. The BFs for all artificial neurons are shown in
Table 1.

The width of the receptive field shows how long the
neuron responds to a complex stimuli. The STRFs
show that the neural network responds strongly to
a givens stimulus over a short time period. Since
the artificial neurons were trained on different types
of stimuli, the STRFs reflect the varying properties
that arose from the training. The black line over
the STRF denotes the general angle of the receptive
field. This angle was determined by performing a
linear regression on the significant areas of the STRF.
The pixels considered significant were greater than
7 standard deviations from the mean. The inverse
tangent of the slope of the best fit line gives the angle
of the STRF.

The angle for each artificial neuron is given in Table

6



Madhav M. Nandipati

Figure 5: Tuning curves from neural network. The artificial neurons (ANs) are selective for frequencies where response intensity
is greater than zero. The peak of the curves gives the best frequency (BF) of the AN. These graphs do not describe the artificial
neurons in the temporal domain.

2. For instance, the first two neurons were trained on
a set of upsweeps and the STRF for each of those ar-
tificial neurons exemplifies the nature of that training
set; the third neuron was trained on a combination of
upsweeps and pure tones, so the angle of the STRF is
less than the angle from the first two STRFs. The ex-
istence of an angled receptive field further illustrates
the temporal properties of the neural network.

4.1.1 Tuning curves

After collecting the responses of the artificial neurons
to the pure tones, the tuning curves were obtained.
The graphs of the tuning curves in intensity vs. fre-
quency of all the artificial neurons are shown in Fig-
ure 5. Although biological neurons can only respond
at one fixed strength (all-or-none principle), the in-
tensity of the response can be quantified as the firing

rate, or how many times a neuron fires per time unit.
The intensity of the response in the neural network is
analogous to the firing rate in biological neurons. The
maximum of the tuning curve is BF of the neuron? .

The tuning curves, similar to the receptive fields,
show that the artificial neurons respond to specific
frequency ranges. The BFs from the STRFs is closely
correlated (r=0.9818) with the BFs from the tuning
curves. The tuning curves, though, do not give any
indication of how the artificial neurons are responding
over time.

5 Discussion

Receptive fields have been used in this project to es-
tablish the linear properties of neural networks. An-
other goal of the project was to compare results from
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Table 1: BFs for the artificial neurons.
AN AN 1 AN 2 AN 3 AN 4 AN 5 AN 6

BF (kHz) 0.877 2.406 3.257 3.639 4.231 4.866

Table 2: Angles for the artificial neurons’ receptive fields.

AN AN 1 AN 2 AN 3 AN 4 AN 5 AN 6

Angle (deg) 29.09 18.00 12.55 -5.39 -12.86 -9.43

Figure 6: Comparison between the BFs from the STRFs and
the tuning curves.

the STRFs and tuning curves. The high correlation
of BFs found using STRFs and tuning curves vali-
dates the spectral components of STRFs. More im-
portantly, the STRFs also characterize the tempo-
ral properties of the artificial neuronal population,
shown by the different angles of the artificial neurons.
Tuning curves, on the other hand, can only depict
the spectral properties. The STRFs allow researchers
to validate a neural model because the STRFs are
able to show the linear properties of the neurons, un-
like traditional methods of characterizing neural net-
works. The close resemblance between the artificial
and biological STRFs hints at the type of processing
done the auditory cortex. Early auditory processing
stages must also process sound stimuli with neurons
responding to different frequencies. As the neural
network shows, neuronal responses are functions of
previous inputs to the model to perform temporal
processing.

5.1 Limitations

This neural network was constructed to evaluate
STRFs and compare them to tuning curves in com-
putational models, and so it is only a basic model.
Continued work will need to be done to improve the
realism of the model. The neural network does not
attempt to accurately simulate the spiking rate, so
the artificial neuronal response intensity is only com-
pared relative to other neurons. Lateral inhibition,
a phenomenon where neurons inhibit the response of
other neurons, was not modeled in the present neu-
ral network. Biological STRFs depict varying levels
of lateral inhibition. Further additions to the model
may produce the lateral inhibition patterns that are
found in biological STRFs.

6 Conclusion

STRFs can be utilized to analyze the properties of
computational models of auditory processing in a vi-
sual manner. The receptive fields describe how an
artificial neuron would generally respond to both the
spectral and temporal aspects of sound stimuli. This
characterization of the neural network can then as-
sist researchers in determining the accuracy of their
models, without reading lines of code or examining
multiple outputs from each individual artificial neu-
ron. The STRFs from the auditory network would
be able to show if a model is responding to the cor-
rectly to time-delayed inputs and frequency ranges
in just a few graphs. Tuning curves are also able to
depict the realism of models, but not with respect to
both frequency and time information. In this way, the
simpler tuning curves do not have the same ability of
receptive fields.

Neural networks and receptive fields also have po-
tential to help researchers and physicians. The most
prevalent auditory disorder is hearing loss, and neu-
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ral networks with receptive fields may be able to
aid physicians in characterizing hearing loss and its
causes. With further development, this model can
approximate some aspects of auditory processing,
specifically relating to processing in the cortex, and
can be used to simulate hearing loss and other dis-
eases associated with it such as tinnitus. Tinnitus is
characterized by a ringing in the ears in the absence
of external stimuli. Researchers would be able to re-
train the weights of the model using Oja’s Rule by us-
ing stimuli such as loud music and other destructive
noises, and then generate the STRFs with the new
weights. If the weighted connection becomes greater
than an arbitrary threshold, then the weight is set
to zero, modeling the loss to hear certain frequencies.
By examining the receptive fields, researchers can tell
which parts of the brain are affected by the sounds
and how both the spectral and temporal properties
change because of the hearing loss. This neural net-
work may be able to track the effect of high frequency
hearing loss on the normally heard low frequencies.
Researchers would explore hypotheses relating to the
effect of the potentially dangerous effects of sounds
without actually exposing humans.

The neural network could also serve as a starting
point in investigating new therapies for hearing loss.
One possible cortical level treatment for hearing loss
is electrode stimulation, where small electrical cur-
rents are delivered to parts of the brain. Another
type of treatment is transcranial magnetic stimula-
tion (TMS). Both of these therapies can be first tested
in neural networks by simulating the effect of brain
stimulation. Researchers would be able to quickly
validate the use of the therapy by examining the prop-
erties of the artificial neurons through STRFs.

The use of spectro-temporal receptive fields in neu-
ral networks is now emerging. This project demon-
strates the flexibility and utility of STRFs in visually
describing the properties of artificial neurons in an
auditory model and determining the validity of com-
putational models. In the future, this research may
be extended to studying hearing loss and other au-
ditory disorders. The insights gained from models
may be used to design better focused experiments
and evaluate novel therapies.
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