TJHSST Computer Systems Lab Senior Research Project
An Interactive, User-driven Physics Simulator
2007-2008

Tom Smilack

May 23, 2008

Abstract

Physics simulations are often of single concepts or
immune to user control. My project aims to change
that by allowing users to create a situation and then
simulating the behavior of objects in that situation.
Users will create objects either through shape tools,
then the program will convert them to polymorphic
objects and run the simulation. Objects varying
from the simple to complex will be modeled: single
shapes or multiple shapes connected statically or
with axles.

Keywords: physics, simulation, interactive, AS-
SIST

1 Introduction

The majority of my research was in physics simula-
tion: how to do it accurately, what equations to use,
and how to implement them. Using the equations
and properties that I give objects, the program de-
termines and shows the way that the objects behave.
I started with basic equations and added more com-
plex ones as the year progressed.

This project models projectile motion and interac-
tion between simple and complex objects. I define
simple objects as rectangles or circles, and complex
objects as multiple simple objects connected by pins
or axles. Interactions include collisions, friction, and
rolling. Objects can also be anchored to the back-

ground to provide platforms or obstacles.

My goal was to create a program, usable by any-
one, that would help the user to gain a better un-
derstanding of physical interactions by inputting any
situation using an intuitive input system and viewing
the behavior of the system. The process of creating
the program would also help me to gain a better un-
derstanding of physics.

2 Background

A team from MIT created ASSIST: A Shrewd Sketch
Interpretation and Simulation Tool which inspired
this project. The program was created in order to
give engineers a way to model systems in the early
stages of design, when only an idea exists, before a
traditional CAD program, which requires precision
and planning, would be appropriate. The user draws
a mechanical system on a smartboard, including an
arrow for gravity. The “sketchpad” system then in-
terprets the drawing. Certain symbols have special
meanings: an x is an anchor, a small circle is a pivot.
Finally, the interpreted drawing is fed into a commer-
cial simulator. My project was inspired by ASSIST
and aimed to be similar but with more focus on the
physics rather than the sketching.

3 Testing and Analysis

The two main sections of my program are the simula-
tion and the objects. The simulation is implemented



both in the main program file - that is, the file con-
taining the main timer - and the objects themselves.
The main file contains an ArrayList of SimObjects
and at each timer iteration it calls the step and draw
functions of every object. Each object is an instance
of a subclass of the abstract class SimObject. SimOb-
ject defines step, which updates the object’s position
and velocity when it is passed a double value dt.
It also includes a signature for the abstract method
draw, which is implemented differently in each sub-
class. The subclasses are currently Rectangle and
Circle.

Circles are easy to draw, but rectangles are more
complicated because their rotation changes the way
they must be displayed. When the rectangle is cre-
ated, I determine the angle from the center to each
corner. When drawing the rectangle, I add its ro-
tation to the angles already found and multiply the
sine and cosine of those by the distance from cen-
ter to corner to determine where to draw the points.
Other polygons should be similar in implementation
to the rectangle, as I treat it more like a set of points
than as a rectangle. The method fillPolygon is used
to display it.

Complex shapes will be implemented using pins
and axles. Pins will connect two shapes so that they
stay together in the same position. To achieve this I
will create a ComplexObject class that will contain a
list of shapes that combine to form it. It will calculate
collisions for every object in it and apply forces to
each object so that they move in unison. Axles will
be more complicated; I will have to give each object
independent motion while still keeping them attached
to each other.

Collision detection has been the most complicated
part of the project so far. It is easy to find when
something is past a wall - check every corner to see
if the x and y values are within an acceptable range.
Determining whether an object is in another is more
difficult. For circles, one must check if the distance
from the center C to the point P is less than or equal
to the radius:

=P+ © -2 <r (1)

For rectangles, one must treat each edge as a line

and determine whether the point P is inside the area
enclosed by each line. The equation of each line is the
point-slope equation with y isolated on the left. If the
topmost point is T, the leftmost is L, the bottommost
is B, and the rightmost is R:

ITw) = - L)+ L, (@)
IB@)= P - L)+L, ()
TR(z) = %(Jc —Tp) + 1T, (4)
BR@w) = 5~ e~ B+ B, (5)

There is a collision when the following conditions are
satisfied:

L,<P, <R, (6)
Py < LT(P) (7)
Py <TR(P,) (8)
LB(P,) < P, (9)
BR(P,) < P, (10)

In the event that the rectangle is straight up or to
a side - in other words, 8 % = /2 is 0, then T, L, B,
and R are sides rather than points, and the equations
become simpler:

L<P,<R (11)

(12)

Wall collisions and object collisions are both resolved
using similar equations. When an object collides with
a wall[?]:

B<P,<T

Vg2 = Vg1 + Lﬁ (13)
Mg
Wa2 = Wq1 + (raplin) (14)
_ 1 701 . n . .
; (14 €e)Vap1 - 10 ,e = elasticity (15)

T 1 mg + (Tap x )2/ 1
When two objects collide, there are two more equa-
tions, and the final one changes [?]:

Tpo = Up1 — g (16)

my



_ —(1+e)Top1 -7
C /mg 4+ 1my + (Fap x 0)2/ 1, + (Top x )2/ 1y
(18)
In order to prevent any possible glitches with re-
solving collisions more than once, and because the
process must be done at the same time to both ob-
jects, I have created a Collider class, whose method,
collide, is called whenever there is a collision between
two objects. The Collider takes both objects as ar-
guments and resolves the collision between them, al-
though collisions are not working perfectly. To re-
solve a collision, it is necessary to know the direction
of the normal vector that protrudes from the object
(A) into which the other object (B) travels. This
would be easy to determine if the side through which
the B passed were known, but I am not sure how ex-
actly to find it. Currently I think that I could look
for what side of A the majority of B is on and then
combine that with the lines I found for my collision
detection. If I looked only at the side of A that B’s
protruding corner is closest to, then there could be a
problem if the corner went past the middle of A or
if it were especially close to one of A’s corners; the
result could be ambiguous.

There are currently three ways to create objects -
two for circles and one for rectangles. I tried to come
up with as intuitive a way as possible so as to make
working with my program easy and fluid. One way
of inputting circles is to click where the center will be
and drag to create a radius. The other way is to click
an edge and drag the diameter. I implemented both
because I think that the second is easier, but I have
seen the first used before. It was harder to figure out
a way to create rectangles because there are more
variables than with circles. To create a rectangle,
one clicks where a corner will be, then clicks again
for another corner and drags to finish the rectangle.
After creating a shape, a dialog box appears to ask
for the velocity and color of the object. I would like
to create something that does not interrupt the flow
as much, but I am not sure how to do so.

Input method selection is part of the GUIL. The
GUI is manifested in a menu bar with the ubiquitous

J

File, Edit, and Help menus, and two rows of buttons
along the bottom. Although File, Edit, and Help are
not the most descriptive names for menus, consid-
ering what my project does, I chose them because
psychologically it would probably be more difficult
or distressing for a user to have unfamiliar menus.
They contain exit, reset, help, and about commands.
The rows of buttons along the bottom are speed con-
trols and input controls. The speed controls are fast
rewind, rewind, pause, play, and fast forward. They
work except when collisions are involved, but I can
fix this by reversing parts of the equations. The input
method controls are the three I already mentioned,
and will eventually include anchors, pins, axles, and
other polygons.

I have made a class called InputMethod to facil-
itate changing of input methods. InputMethod is
an abstract class which implements the MouseLis-
tener and MouseMotionListener classes. Whenever
the buttons controlling input are pressed, the Phys-
Sim class removes the current InputMethod and adds
the new one to itself as a MouseListener and a Mouse-
MotionListener.

Work on anchors has been started. The specific
purpose of an anchor is to lock an object to the back-
ground, enabling it to act as another wall with which
objects can interact. Currently, objects can be manu-
ally anchored in the setup phase of the program, and
they will act as they are supposed to. It should not
be hard to create the input method class for anchor-
ing objects because it will consist of checking if the
mouse is over an object, an extension of collision de-
tection, and if it is clicked, toggling a boolean value
held by the object.

4 Preliminary Results

My program accurately represents projectile motion
and collisions with walls without regard to friction,
and with an elasticity of one. While running, it may
seem that it is not accurate, but that is because peo-
ple are judging it with respect to their experiences,
which take place in the real world, which has many
more forces than my program currently simulates.
Rudimentary collisions between moving objects can



be seen, but are not completed. In addition, anchors
are almost complete. Once I implement friction and
find a good way to determine the elasticity value for
each collision, my simulations will seem much more
realistic.

References

1]

Neumann, Eric. “Rigid Body Collisions.” 2004.
<http://www.myphysicslab.com/collision.html>



