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1 Propogation in Graphs

Let X be a graph, and let A = A(X) be its adjacency matrix. Let V (X) be the vertices and
E(X) be the edges. By a state s of X we mean an assignment of a number to each vertex.
We define an operation f on the numberings as follows:

(f(s))(v) =
∑
w∼v

s(w) (1)

If we think of s as a vector (in RX for some ring R), then this is

f(s) = As (2)

We call the operation of applying f to a given state propogating the graph. We are interested
in studying what happens mod n if the state s assigns an integer to each vertex and we
repeatedly propogate the graph.

2 Terminating States

The first question we consider is which states will eventually become the state with all 0s
upon repeated propogation. We ask whether all states will go to zero in this case. Note that
this means that Aks = 0 for all s for some k. Since we are working mod n, there are only
finitely many possible A, so such a k is finite. Thus in particular Akei = 0, where ei is the
vector with ith coordinate 1 and all other coordinates 0. So AkI = 0, where I is the identity
matrix. But this means that Ak = 0, so this occurs if and only if A is nilpotent. Also note
that if a state terminates mod p and mod q, then it terminates mod pq, as follows: After
some number of propogations, all entries are divisible by p. Now factor out p from each
entry. After some number of propogations, the resulting state will have all entries divisible
by q. Putting back in the factor of p yields that all entries will be divisible by pq. Note that
this reasoning does not require that p and q be relatively prime. Thus it suffices to consider
when a state terminates modulo a given prime p. We have the following theorem:

Theorem 2.1 If A is a linear operator on a finite-dimensional vector space V (over an
arbitrary field F), then A is nilpotent iff all of its eigenvalues are zero.

This will usually be the most convenient way to characterize terminating operators.

2.1 k-dimensional grids

We first consider a graph consisting of all points (x1, . . . , xk) with 0 ≤ xi ≤ di, where two
points are connected if all but one of the coordinates are the same, and the final coordinate
differs by 1. We call this a d1 × d2 × · · · × dk grid. Note that, as a graph, this is the same
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as Pd1�Pd2� · · ·�Pdk
, where Pm is the path of length m and � is the Cartesian product of

graphs. We have the following characterization:

Theorem 2.2 The d1 × · · · × dk grid is nilpotent mod p if and only if one of the following
hold:

1. p = 2,and each di is either one less than a power of 2 or 2. Furthermore, the number
of indices i with di = 2 is even.

2. di = 1 for all i.

Proof Clearly the graph is nilpotent if all di are equal to 1, so we assume throughout the
rest of this proof that this is not the case.

Note that if f1, . . . , fk are eigenfunctions of Pd1 , . . . , Pdk
with eigenvalues λ1, . . . , λk, then

(f1 ⊗ · · · ⊗ fk)(x1, . . . , xk) := f1(x1) · · · fk(xk) is an eigenfunction of Pd1� · · ·�Pdk
with

eigenvalue λ1 + . . . + λk. In fact, A(Pd1� · · ·�Pdk
) = A(Pd1)⊗ Id2 ⊗ · · · ⊗ Idk

+ . . . + Id1 ⊗
· · · ⊗ Idk−1

⊗A(Pdk
), so this fully characterizes the eigenfunctions of Pd1� · · ·�Pdk

. Thus it
suffices to consider the spectrum of Pm mod p.

Our motivation will come from the spectrum of Pm over C, where the eigenfunctions are

fa(v) = e
2πiav
m+1 − e

−2πav
m+1 with eigenvalues λa = e

2πia
m+1 + e

−2πia
m+1 . We can find an analog mod p

by considering an (m + 1)st root of unity ζ and considering

fa(v) = ζav − ζ−av

Then it is easy to see that this is an eigenfunction with eigenvalue λa = ζa + ζ−a. Now let
m + 1 = pxk, where k is not divisible by p. Then consider Fpφ(k). This field’s multiplicative

group has order pφ(k) − 1, so that by Euler’s theorem it has order divisible by k, whence it
has an element of order k. Let ζ be this element and consider the eigenfunction above. First,
we check that fa(v) is not the zero function. Suppose that ζv − ζ−v = 0. Then ζ2v = 1, so
(ζ2)v = 1 for all v. This implies that ζ2 = 1 for m > 1. Thus, unless k = 1, 2 (corresponding
to m = {1, 2}px−1), we have a non-zero eigenfunction. In these cases, we note that f(v) = v
is an eigenfunction with eigenvalue 2, so that unless p = 2 we have a non-zero eigenfunction
with non-zero eigenvalue. Next, we check that λa 6= 0 for some a. Suppose that λ1 = 0.
Then ζ + ζ−1 = 0. Thus ζ2 + 1 = 0. Now suppose that λ2 = 0. Then ζ2 + ζ−2 = 0, so
ζ4 + 1 = 0. But ζ2 = −1, so ζ4 = (ζ2)2 = (−1)2 = 1. Thus, since ζ4 + 1 = 0, 1 + 1 = 0 so
p = 2. On the other hand, if ζ2 + 1 = 0, then ζ has order at most 2 over F2, so ζ ∈ F4. But
every non-zero element in F4 has order 1 or 3. Thus m+1 | 3 so m = 2. We will analyze this
case in Section ??. We have thus shown that for p 6= 2, each path has at least one non-zero
eigenvalue. Since all of these graphs are bipartite, this actually implies that each path has at
least two distinct eigenvalues. Therefore, any Cartesian product of the paths will also have
at least one non-zero eigenvalue, since the eigenvalues are the sum of the eigenvalues of each
of the paths, and so for the last path in the product we can choose between two different
eigenvalues in the sum, so that both sums cannot be zero. We thus can confine our attention
to the case when p = 2.
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In fact, the only places where we need to do extra analysis are for m = 2 and m = 2x − 1,
as these are the only places in the preceding analysis where we needed to assume p 6= 2. We
show that the only eigenvalue of A(P2) over F2 is 1 in Section ??. If m = 2x−1, we have the
following argument to show that all states terminate: We proceed by induction on i, saying
that all states in P2i−1 terminate. For i = 1 the result is trivial. Otherwise, let s be a state

in P2i+1−1. We define a function g : FP2i+1−1

2 → FP2i−1

2 as (g(s))(v) = s(v)+s(2i+1−v), where
we abuse notation and associate the first 2i− 1 vertices in P2i+1−1 with the vertices in P2i−1.
It is easy to verify that A(P2i−1)g = gA(P2i+1−1). Also, g is clearly surjective. Thus since
A(P2i−1) is nilpotent by the inductive hypothesis, A(P2i+1

1
) must be nilpotent as well, which

completes our induction.

We also need to show that, in all other cases, there are at least two distinct eigenvalues
(we can not use the bipartite condition anymore since x = −x in F2). This argument
goes much the same as before. Suppose that λ1 = λ2. Then ζ + ζ−1 = ζ2 + ζ−2. Thus
ζ3 + ζ = ζ4 + 1, which over F2 becomes ζ(ζ + 1)2 = (ζ + 1)4, or (ζ + 1)2(ζ2 + ζ + 1) = 0.
Thus either ζ = 1 or ζ has degree 2 over F2. We have already shown that we can choose
ζ 6= 1 when m 6= 2x− 1. Thus ζ has degree 2 over F2, so ζ has order 1 or 3, so m + 1 | 3 and
m = 2.

If any di 6= 2, 2x − 1 in our Cartesian product, then we can use the same argument as
above to show that we can find two distinct sums of eigenvalues (since at least one path
has at least two distinct eigenvalues), and not both sums can be zero. Thus if our graph is
nilpotent, each di = 2, 2x − 1. If there are an odd number of di, then all eigenvalues of the
resulting graph are 1 (so that all states are fixed by propogation), so again the graph is not
nilpotent. On the other hand, if there are an even number of di, then all eigenvalues are
0, so the graph is nilpotent, as our characterization requires. We have thus completed the
desired characterization.

We now devote our attention to the case of A(P2) over F2.

2.1.1 Spectrum of A(P2) over F2

It is easy to explicitly calculate the characteristic polynomial in this case. We see that A(P2)
is equal to (

0 1
1 0

)
(3)

This has characteristic polynomial λ2 − 1 = (λ − 1)2 over F2, from which we see that both
eigenvalues are 1.
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