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Let O be the graph with V (O) = R2 and where two vertices are connected if they are at
an odd distance from each other. We call O the odd-distance graph. We aim to show that
the chromatic number χ of O is infinite if we only allow measurable colorings (from now
on, by chromatic number we mean chromatic number in this sense). Consider the operator
Bα : L2(R2) → L2(R2) defined by

(Bαf)(x, y) =

∫ π

−π

∞∑
k=0

α−kf(x + (2k + 1) cos(θ), y + (2k + 1) sin(θ))dθ (1)

Clearly, Bα is a linear operator. We also make the following observation:

Lemma 0.1 Let I be an independent set in O, and let g be any function that is zero outside
of I. Then 〈f, Bαf〉 = 0.

Proof

〈f, Bαf〉 =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)(Bαf)(x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)

∫ π

−π

∞∑
k=0

α−kf(x + (2k + 1) cos(θ), y + (2k + 1) sin(θ))dθdxdy

=

∫ ∞

−∞

∫ ∞

−∞

∫ π

−π

∞∑
k=0

α−if(x, y)f(x + (2k + 1) cos(θ), y + (2k + 1) sin(θ))dθdxdy

= 0

In the last equality we used the fact that f(x, y)f(x + (2k + 1) cos(θ), y + (2k + 1) sin(θ) = 0
since not both (x, y) and (x+(2k +1) cos(θ), y +(2k +1) sin(θ) can be in I (they are at odd
distance), so at least one of the two must be zero.

We can use this to bound the chromatic number χ of O. Let Λ be the set of eigenvalues of
B. Let λmax = sup(Λ) and λmin = inf(Λ). Then we have the following:

Lemma 0.2

χ ≥ 1− λmax

λmin

(2)

Proof Let f be any eigenfunction with eigenvalue λ. Suppose that there exists a χ-coloring
of O with color classes I1, . . . , Iχ. Let fi be defined as

fi(x) =

{
f(x) x ∈ Ii

0 x 6∈ Ii

}
(3)
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We note that each fi satisfies the conditions of Lemma ??. Combining this with the fact that
Bα is symmetric and that λmin||f ||2 ≤ 〈f, Bf〉 for all f , we have (here we use the condition
that the coloring classes be measurable):

2(χ− 1)λmin||f ||2 =

χ∑
i,j=1

λmin||fi − fj||2

≤
χ∑

i,j=1

〈fi − fj, B(fi − fj)〉

=

χ∑
i,j=1

〈fi, Bfi〉+ 〈fj, Bfj〉 − 2〈fi, Bfj〉

= −2

χ∑
i,j=1

〈fi, Bfj〉

= −2〈
χ∑

i=1

fi, B(

χ∑
i=1

fi〉

= −2〈f, Bf〉
= −2λ||f ||2

So 2(χ − 1)λmin||f ||2 ≤ −2λ||f ||2. Re-arranging and using the fact that λmin ≤ 0, we have
χ ≥ 1− λ

λmin
. Letting λ approach λmax yields the desired result.

We next compute the eigenvalues of Bα. It is easy to verify that f(r,s)(x, y) = ei(rx+sy) is
an eigenfunction of Bα. We have, from the theory of harmonic analysis on R2, that these
functions span the set of equivalence classes of L2(R2) under the Haar measure. Thus,
in particular, all eigenvalues are accounted for by these eigenfunctions. We see that the
eigenvalue of the eigenfunction f(r,s) is given by

λ(r,s) =

∫ π

−π

∞∑
k=0

α−kei(2k+1)(r cos(θ)+s sin(θ))dθ =

∫ π

−π

∞∑
k=0

α−kei(2k+1)
√

r2+s2 cos(θ+φ)dθ (4)

for an appropriately chosen φ. Thus we need only actually consider λ(r,0), which we from
now on denote λ(r). Then we have

λ(r) =

∫ π

−π

∞∑
k=0

α−k
(
eir cos(θ)

)2k+1
=

∫ π

−π

eir cos(θ)

1− α−1e2ir cos(θ)
dθ (5)

Here we have simply summed the geometric series. Since Bα is symmetric, λ(r) must be
real, so we can take the real part of the integral:
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λ(r) = Re

[∫ π

−π

(cos(r cos(θ)) + i sin(r cos(θ)))(1− α−1 cos(2r cos(θ)) + iα−1 sin(2r cos(θ)))

(1− α−1 cos(2r cos(θ)))2 + α−2 sin(2r cos(θ))2
dθ

]
=

∫ π

−π

cos(r cos(θ))(1− α−1 cos(2r cos(θ)))− α−1 sin(r cos(θ)) sin(2r cos(θ))

1 + α−2 − 2α−1 cos(2r cos(θ))
dθ

=

∫ π

−π

α
α cos(r cos(θ))− cos(r cos(θ)) cos(2r cos(θ))− sin(r cos(θ)) sin(2r cos(θ))

α2 + 1− 2α cos(2r cos(θ))
dθ

=

∫ π

−π

α
α cos(r cos(θ))− cos(r cos(θ))

α2 + 1− 2α cos(2r cos(θ))
dθ

=

∫ π

−π

α(α− 1) cos(r cos(θ))

(α− 1)2 + 4α sin2(r cos(θ))
dθ

In the second-to-last step, we used the identity cos(a − b) = cos(a) cos(b) + sin(a) sin(b).
It is easy to see based on Equation ?? that the maximum occurs when r = 0, when we
get λ(0) = 2πα

α−1
. We will, on the other hand, show that the magnitude of λmin is at most

O((α − 1)−
3
4 ). This shows that as α approaches 1, 1 − λmax

λmin
grows without bound, so that

there cannot exist any finite coloring of O.

Note that for r ≤ π
2
, λ(r) is necessarily positive since the integrand is always positive

(cos(r cos(θ)) being the only thing that can go negative in the expression). We thus assume
that r > π

2
. It suffices to show that∫ π

2

0

(α− 1) cos(r cos(θ))

(α− 1)2 + 4α sin2(r cos(θ))
dθ ≤ c(α− 1)−

3
4 + d (6)

for all r for some constants c, d (as this, neglecting a factor of 4α, is clearly an upper bound
for the integral above). Let h be the function we are integrating. Let Rk denote the region
for which h(θ) ≥ 1 and that contains the value of θ where cos(θ) = kπ

r
. Then we note that

|
∫
Rk

h(x)dx| > |
∫
Rk−1

h(x)dx| since cos(θ) decreases faster as θ increases from 0 to π
2
. We

will bound the area of Rb r
π
c. First, we determine when

α− 1

(α− 1)2 + 4α sin2(r cos(θ))
≥ 1 (7)

as this is clearly a superset of the area where h(θ) ≥ 1. But this happens when α − 1 ≥
(α− 1)2 + 4α sin2(r cos(θ)), or sin2(r cos(θ)) ≤ (α−1)−(α−1)2

4α
= (α− 1)2−α

4α
< α−1

4
. So the area

for which (??) holds is contained in the area for which sin(r cos(α)) ∈ [−
√

α−1
2

,
√

α−1
2

]. On

the other hand, this is contained in the area in which r cos(θ) is within
√

α−1
2

of a multiple

of π, as sin(
√

α−1
2

) >
√

α−1
2
− (α−1)1.5

12
√

2
>

√
α−1
2

for α − 1 small enough. So we want to find

when

−1

r

√
α− 1

2
≤ kπ

r
− cos(θ) ≤ 1

r

√
α− 1

2
(8)
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We claim that, if cos(θ0) = kπ
r

, then it suffices to take θ ∈ [θ0 − 2 4√α−1√
r

, θ0 + 2 4√α−1√
r

]. First of

all, if θ0 −
√

α−1
r

< 0 or θ0 +
√

α−1r
>

π
2
, then θ is outside of our range of integration and so we

are definitely covering at least the area we need on that end of the interval. Thus we may
assume otherwise, and we have the following lemma:

Lemma 0.3 If d > 0 and θ, θ + d ∈ [0, π
2
], then cos(θ)− cos(θ + d) ≥ 1− cos(d).

Proof Take d
dθ

[cos(θ)− cos(θ + d)] = sin(θ + d) − sin(θ). This is clearly increasing for
θ ∈ [0, π

2
−d], so we might as well take θ = 0, as this gives a smaller value for cos(θ)−cos(θ+d)

than any legal value of θ. Then we get 1− cos(d) as our answer, as claimed.

With Lemma ?? in hand, we need only show that 1− cos(2 4√α−1√
r

> 1
r

√
α−1

2
. This is evident

once again from the Taylor approximation as, as for α − 1 small enough, 1 − cos(2 4√α−1√
r

>

2
√

α−1
r

− 2(α−1)
3r2 > 1

r

√
α−1

2
. Thus for any given value of k, the area for which (??) holds is

at most 4 4√α−1√
r

. We only care about Rb r
π
c, so in particular we can take k = b r

π
c and the

preceding argument holds. On the other hand, α−1
(α−1)2+4α sin2(r cos(θ))

< 1
α−1

, so integrating

across this entire region gives us a value of at most 4
√

r(α−1)
3
4
, while integrating across the

rest of the interval [0, π
2
] gives us a value of at most π

2
, we have shown that the integral across

all of the remaining Rk, k < b r
π
c, must yield a positive number, and for all other portions of

the interval α−1
(α−1)2+4α sin2(r cos(θ))

< 1 by design. Also, recall that we established that r > π
2
,

so in particular r > 1. Thus we have that∫ π
2

0

α− 1

(α− 1)2 + 4α sin2(r cos(θ))
dθ ≤ 4(α− 1)−

3
5 +

π

2
(9)

as desired. This establishes that the chromatic number of the odd-distance graph is indeed
infinite, as claimed.
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