
Conformal Mapping Using the Schwarz-Christoffel Transform

2007-2008

Evan Warner

Abstract

The Schwarz-Christoffel transform is a conformal
mapping from the upper half of the complex plane
to a polygonal domain. It allows many physical
problems posed on two-dimensional, polygonal
regions, such as heat flow, fluid flow, and elec-
trostatics, to be solved numerically. This type
of problem cannot generally be solved in closed
form; the Schwarz-Christoffel transform provides
an exceptionally accurate method of solution. This
paper describes the implementation of a working
software unit that efficiently and accurately calcu-
lates Schwarz-Christoffel transforms and inverses.
The program incorporates graphical, easy-to-use
interfaces and will contain resources to aid in
solving physical problems. Future research into
mathematical extensions to the Schwarz-Christoffel
transform, such as the inclusion of simple curves,
will be conducted.

Keywords: Schwarz-Christoffel transform, con-
formal mapping, numerical analysis, Laplace’s equa-
tion, fluid flow, heat flow

1 Introduction

Many physical problems are expressed as differen-
tial or boundary value problems over a surface. Of-
ten, these surfaces are or can be approximated by
two-dimensional polygons. When this occurs, one
method of determining accurate solutions is by as-
suming the polygonal domain exists in the complex
plane and determining a conformal map, which pre-
serves the structure of Laplace’s equation, that re-

states the problem in a simpler domain. Here, the
upper half-plane is used. A solution to the problem,
now easy to solve analytically or numerically, is then
mapped back to the original domain. For such polyg-
onal domains, a method of determining the specific
transform needed is provided by the following for-
mula, known as the Schwarz-Christoffel transform:

f(z) = A

∫ z

0

n∏
j=1

(ζ − xj)−θj/πdζ +B. (1)

In this formula, ζ is an independent complex vari-
able in the upper half-plane, the θj are the exterior
angles of the polygon, the xj are prevertices of the
mapping (given along the real axis), n is the number
of verticies of the polygon, and A and B are complex
constants that specify the location, size, and orienta-
tion of the image polygon in the complex plane. The
θj must satisfy

n∑
j=1

θj = 2π, (2)

which ensures the completeness of the image polygon
[2]. Unfortunately, the Schwarz-Christoffel formula
is not easy to evaluate, and requires both effective
integration algorithms and an efficient, convergent
method to solve a specific nonlinear equation. Imple-
mentation of such numerical routines is not a trivial
problem, and is the subject of this paper.

The initial project may be divided into four sepa-
rate problems. First, a method to effectively evaluate
integrals of the form found in the Schwarz-Christoffel
formula is required. Second, a numerical algorithm
to solve the so-called Schwarz-Christoffel parameter
problem, a system of nonlinear equations for the pre-
vertices, must be developed. Third, methods to eval-

1

uate the forward and backward transforms based on
given prevertices must be coded. Fourth, a user inter-
face is needed, which should be robust and accessible
to allow nonspecialists to systematically solve vari-
ous physical problems. The four components may
be coded simultaneously or in series, as they are by
nature almost entirely separable problems. In this
project, each part was coded in series.

Subsequent research will be done into improve-
ments and optimizations to the numerical algorithms
for various subproblems and extensions. These in-
clude the problem of mapping polygons with large as-
pect ratios, which are generally highly ill-conditioned,
and the extension of the Schwarz-Christoffel formula
to simple curves. The goal of the project is thus
twofold: to produce a piece of software that will be
useful in the solution of real, physical problems, and
to improve upon current algorithms for producing the
Schwarz-Christoffel transform.

2 Background

The Schwarz-Christoffel transform was first dis-
covered independently in the late 1860s by Elwin
Christoffel and Hermann Schwarz. Schwarz used
some of the ideas of the transform to provide a more
rigorous proof of the Riemann Mapping Theorem,
which he had previously shown to be incomplete, but
the majority of this work was on a purely theoretical
level [5]. The usefulness of the transform was miti-
gated by the formula’s unwieldiness, as the mappings
for all but the simplest domains could not be calcu-
lated in closed form. Numerical estimates, especially
for nonsymmetric polygons with four or more verti-
cies, could not be effectively calculated by hand. Ap-
plication to physical problems, therefore, was limited
at best until the advent of the computer. A computer
algorithm to compute the Schwarz-Christoffel trans-
form was first written in the 1960s, and others have
been written and modified since then [3].

The first problem in calculating the Schwarz-
Christoffel mapping is the evaluation of the integral
given by Eq. (1). The integrand contains singular-
ities at each of the endpoints of the image polygon,
which tend to render ordinary numerical integration

routines either useless or hopelessly slow. In addi-
tion, the presence of negative powers in f means
that domains of applicability for each of the subfunc-
tions (ζ − xj)−θj/π must be chosen so that the en-
tire domain in and immediately around the image
polygon is meromorphic. Although several quadra-
ture routines have been used for this problem, the
method of choice today is Gauss-Jacobi quadrature,
which uses a specially-tailored weighting function to
choose points of evaluation and weights for the points
that maximize efficiency. In practice, the Schwarz-
Christoffel formula is altered so that the last prever-
tex, xn, is chosen to be both −∞ and +∞ (the val-
ues are equivalent for a conformal map, which acts
on the Riemann sphere). This can always be done
due to the extra degrees of freedom contained in Eq.
(1). The integrals that must be evaluated in practice
in the course of the Schwarz-Christoffel transform are
of the form ∫ xi

xi−1

n−1∏
j=1

(ζ − xj)−θj/πdζ. (3)

These integrals can always be written as required for
Gauss-Jacobi quadrature; that is, in the form∫ b

a

(z − a)α(z − b)βψ(z)dz, (4)

where α and β are real numbers greater than −1.
The points and weights of a Gauss-Jacobi quadra-

ture are calculated here using a routine from Numer-
ical Recipes [4] which efficiently estimates and solves
for the roots of the Jacobi polynomials, which form
the sample points just as the roots of the Cheby-
shev polynomials form the sample points for stan-
dard Gaussian quadrature. These points, however,
are uniformly calculated in the range [−1, 1], and the
integrals must be adjusted slightly to conform to this
range. During the calculation of the prevertices, dis-
cussed below, the z in Eq. (4) are restricted to the
real axis; however, in direct calculations once the pre-
vertices have been found, the z will generally be fully
complex.

The second problem is the Schwarz-Christoffel pa-
rameter problem, where the xj in Eq. (1) are calcu-

2

lated. As described in [2], a series of nonlinear, con-
strained equations can be formed from the require-
ment that the image polygon and the desired polygon
be similar (the constants A and B in Eq. (1) then en-
sure congruency). Written out, there are n− 3 linear
equations in n− 3 unknowns, once the extra degrees
of freedom have been taken care of by arbitrarily giv-
ing three of the xj precise values. Here, as in the
literature, we take x1 = −1 and x2 = 0 in addition
to the already-defined xn = ±∞. The equations to
be solved, ensuring that the target polygon and the
image of the Schwarz-Christoffel map are similar, are
then

|
∫ xi

xi−1

∏n
j=1 (ζ − xj)−θj/πdζ|

|
∫ x2

x1

∏n
j=1 (ζ − xj)−θj/πdζ|

− |wj − wj−1|
|w2 − w1|

= 0,

(5)
where the w are the target vertices, i = 3, 4, ..., n−1,
and all other variables are as defined above. However,
there is an additional complication, as preserving the
order of the prevertices on the real axis is important.
The extra constraint can be expressed as

1 < x3 < x4 < . . . < xn−1 <∞. (6)

The unconstrained problem is relatively easy to solve;
however, the constraint prevents a naive application
of a Newton’s Method variant to this problem. To get
around this, Trefethen in [3] suggests a simple change
of variables that ensures the inequalities of Eq. (6).
Take a new series of variables, χj , and let

χj = ln (xj − xj−1). (7)

The resulting χj will automatically obey Eq. (6),
and the original xj are found by the simple inverse
formula

xj = xj−1 + eχj . (8)

This new set of equations in the χj is readily solved by
a variant of Newton’s Method that does not require
the calculation of the Jacobian matrix (which would
be hopelessly complex), but rather uses progressive
estimates.

3 Development

The software has been written entirely in Java, al-
though certain routines may be later written in C to
increase speed if there is a bottleneck at any point in
the process. The entire development of the program
is designed to be achieved in stages by attacking the
subproblems individually. The following is a list of
classes, with short descriptions, written up to this
point:

• class Complex - this class stores and performs
arithmetic on complex numbers, which are not
directly supported by Java. Several of the meth-
ods, including the multiplication and division al-
gorithms, are designed to run as quickly as pos-
sible while avoiding intermediate overflow and
floating-point error propagation. The multipli-
cation method, for instance, requires only three
real multiplications rather than four. (see Ap-
pendix for examples)

• class GaussJacobiWeights - this class calculates
and stores the sample points and weights for a
given Gauss-Jacobi quadrature over the interval
[−1, 1]. This routine uses Newton’s Method to
find the roots of the Jacobi polynomials, which
are the sample points for the integral, and was
taken and translated from [4].

• class SchwarzFunction - this class evaluates
the integrand of a given real-valued Schwarz-
Christoffel integral, serving as a storage class for
data of this kind.

• class GaussQuad - this class accepts as input ψ,
a, b, α, and β from Eq. (4). For an arbitrary
integral in that form, shifting and scaling the
bounds produces the equivalent integral

cα+β+1

∫ 1

−1

(ζ − 1)α(ζ + 1)βψ(cζ +m)dζ, (9)

where b = a+b
2 and c = b − m = m − a.

This integral is then evaluated using the sam-
ple points and weights given by the GaussJacobi-
Weights class and returned. For any GaussQuad
object, varying numbers of sample points (and

3

thus varying accuracy) are accepted by its in-
tegrate() method. (see Appendix for example
code)

• class RealNewtonRaphson - this class accepts an
array of vertices and calculates the necessary
prevertices as well as the constants A and B
from Eq. (1). The method employs a standard
Newton-Raphson method to solve the Eq. (5).
At each step, an approximate Jacobian matrix
for the function is calculated using a forward-
difference method in each dimension; the step
vector is then solved for using an LU factoriza-
tion on the equation

Jδ~x = ~f, (10)

where J represents the Jacobian, δ~x the step vec-
tor, and ~f the current function vector. Note
that by employing a forward-difference method
to find the Jacobian, the number of function
evaluations can be cut in half, as the current
function vector can be reused in the Jacobian
calculation. (see Appendix for example code)

• class ForwardGaussQuad - this class, using
already-calculated values for the prevertices,
evaluates the Schwarz-Christoffel integral at a
given point. To minimize error caused by the
presence of singularities near the path of the
integral (the singularities at the endpoints are
handled by the Gauss-Jacobi quadrature), the
path of integration is divided recursively such
that no segment is closer to a singularity than
one-half its length, a technique employed in [3].
Such recursive subdivision is known as com-
pound Gauss-Jacobi quadrature.

• class SchwarzChristoffel - this class runs the
graphical user interface and calls RealNewton-
Raphson and ForwardGaussQuad when necessary.
The graph itself has the ability to show axes and
manually adjust window parameters.

In future iterations of the project, a new set of
routines will be implemented to calculate continuous
Schwarz-Christoffel problems. Immediately following

from Eq. (3) above, we have

f ′(z) = A

n−1∏
j=1

(ζ − xj)−θj/π. (11)

To change this into a continuous problem, we can
rewrite this as

f ′(z) = Ae
1
π

Pn−1
j=1 −θj ln (z−xj). (12)

Then, defining the natural logarithm function as
single-valued in the upper half-plane, except where
xi = z, f ′ becomes an analytic function in the
required domain. To formulate the continuous-
boundary problem, we simply replce the sum in Eq.
(12) with an integral, and integrate the entire func-
tion to find f(z):

f(z) = A

∫ z

0

e
1
π

R∞
−∞−θ(x) ln (ζ−xj)dxdζ +B, (13)

where θ(x) represents the amount of turning per unit
length on the real axis, such that∫ ∞

−∞
θ(x)dx = 2π. (14)

The continuous problem therefore has an extra sub-
problem to solve, namely, the solution of the integral
equation, Eq. (13), to find θ(x) at every x.

The majority of testing of the program is specific
to a single numerical routine; that is, each of the algo-
rithmic components are tested individually. To calcu-
late the GaussQuad routines, for instance, randomly
generated sample problems are solved by MATLAB
to provide an approximate check on the accuracy of
solutions, then precision is achieved by manipulating
the number of sample points used for the quadrature.

Shortly, a program specifically designed to track
approximate error propagation and runtimes of each
of the components will be developed. For the major-
ity of the routines used in the program, strict error
bounds can be calculated, and for the remaining al-
gorithms error can be accurately estimated. For all
subproblems, as well as the entire routine, plots of
runtime versus precision will be generated to exam-
ine the efficacy of each routine. For the final program,
random polygonal generation will be used to dynam-
ically test the program for a range of inputs.

4

4 Results and Discussion

The purpose of this project was to calculate and
display Schwarz-Christoffel transforms, which con-
formally map the upper half-plane to an arbitrary
polygon, efficiently and accurately. In addition, ad-
ditional research into the Schwarz-Christoffel trans-
form itself, including its extension to curved target
domains, was investigated. The evaluation of the
Schwarz-Christoffel formula involves several parts, in-
cluding the efficient calculation of a certain class of
integrals as well as a solver of nonlinear systems of
equations. Solving the continuous-parameter prob-
lem will require numerical solutions to a certain class
of integral equations.

Results on accuracy versus time data are forthcom-
ing; however, preliminary results have confirmed that
answers are correct to within the modest relative er-
ror tolerance of about 10−4. Nevertheless, far greater
accuracy is expected once dynamic testing begins.

The first problem, that of numerical integration,
has been solved and refined, and a basic user inter-
face has been designed. The second problem, that of
a nonlinear equation solver to calculate the prever-
tices, has also been completed to satisfaction; current
research focuses on correct implementation of the for-
ward transform using given prevertices. Preliminary
results indicate the general correctness but inexacti-
tude of the forward transform in the absence of com-
pound quadrature, especially near the boundaries of
the given polygon. It is hoped that a full implemen-
tation of the compound quadrature will ameliorate
these concerns.

The completed program will be useful on several
levels: as a teaching aid, and as a tool for researchers
solving certain equations on polygonal regions. Once
the basic Schwarz-Christoffel problem is numerically
solved, the program can form an easy basis for test-
ing research in numerical analysis and mathematics
that deals with improving or expanding the Schwarz-
Christoffel transform.

Appendix

Code for class Complex

public class Complex
{
...

public Complex multiply(Complex z)
{

double temp1=x*z.real();
double temp2=y*z.imag();
return new Complex(temp1-temp2,(x+y)*(z.real()+z.imag())-temp1-temp2);

}
public Complex divide(Complex z)
{

double temp1=z.real()/z.imag();
double temp2=z.imag()/z.real();
if(Math.abs(z.real())>=Math.abs(z.imag()))
{

double denominator=z.real()+z.imag()*temp2;
return new Complex((x+y*temp2)/denominator,(y-x*temp2)/denominator);

}
else
{

double denominator=z.real()*temp1+z.imag();
return new Complex((x*temp1+y)/denominator,(y*temp1-x)/denominator);

}
}
public double modulus()
{

if(x==0&&y==0)
return 0.0;

else if(y==0)
return Math.abs(x);

else if(x==0)
return Math.abs(y);

if(Math.abs(y)>=Math.abs(x))
return Math.abs(x)*Math.sqrt(1.0+(y*y)/(x*x));

else
return Math.abs(y)*Math.sqrt(1.0+(x*x)/(y*y));

}
public Complex sqrt()
{

double w=0;
if(x==y&&y==0)

return new Complex(0.0,0.0);
else if(Math.abs(x)>=Math.abs(y))

w=Math.sqrt(Math.abs(x))*Math.sqrt((1.0+Math.sqrt(1.0+(y*y)/(x*x)))/2.0);
else

w=Math.sqrt(Math.abs(y))*Math.sqrt((Math.abs(x/y)+Math.sqrt(1.0+(x*x)/(y*y)))/2.0);
if(x>=0)

return new Complex(w,y/(2*w));
else if(y>=0)

return new Complex(Math.abs(y)/(2*w),w);
else

return new Complex(Math.abs(y)/(2*w),-w);
}
public Complex power(double a)
{

double theta=this.argument();
double r=this.modulus();
Complex temp = new Complex(Math.cos(theta*a),Math.sin(theta*a))

.multiply(Math.pow(r,a));
return temp;

}
public Complex ln()
{

5

double theta=this.argument();
double r=this.modulus();
return new Complex(Math.log(r),theta);

}
public Complex exp()
{

double etothex=Math.exp(x);
return new Complex(etothex*Math.cos(y),etothex*Math.sin(y));

}
...
}

Code for class ForwardGaussQuad
public class ForwardGaussQuad
{
...

public Complex recurse(int N, Complex a, Complex b, double al, double be)
{

if(a.imag()-b.imag()==0&&a.real()-b.real()==0)
return new Complex(0,0);

Complex half = a.add(b).divide(2.0);
if(closeToSingularity(a,b,prevertex))

return recurse(N, half, b, 0.0, be).add(recurse(N, a, half, al, 0.0));
return integrateSubinterval(N, a, b, al, be);

}
...

public Complex integrateSubinterval(int N, Complex a, Complex b, double alpha, double beta)
{

GaussJacobiWeights gjw = new GaussJacobiWeights(0.0,beta,N);
double[] points = gjw.getPoints();
double[] weights = gjw.getWeights();
double m = (b.real()+a.real())/2;
double c = a.real()-m;
double bimag = b.imag();
Complex sum = new Complex(0.0,0.0);
for(int i=0;i<weights.length;i++)

sum=sum.add(value(new Complex(c*points[i]+m,bimag),-1,-1).multiply(weights[i]));
sum=sum.multiply((new Complex(c,0)).power(beta+1.0));
gjw = new GaussJacobiWeights(alpha,0.0,N);
points = gjw.getPoints();
weights = gjw.getWeights();
m = (b.imag()+a.imag())/2;
c = a.imag()-m;
double areal = a.real();
Complex sum2 = new Complex(0.0,0.0);
for(int i=0;i<weights.length;i++)

if(alpha!=0.0)
sum2=sum2.add(value(new Complex(areal,c*points[i]+m),1,-1).multiply(weights[i]));

else
sum2=sum2.add(value(new Complex(areal,c*points[i]+m),-1,-1).multiply(weights[i]));

sum2=sum2.multiply(new Complex(0,c).power(alpha+1.0));
if(a.imag()==0)

sum2.imag(-sum2.imag());
return sum.add(sum2);

}
...
}

Code for class GaussQuad
public class GaussQuad
{
...

public double integrate(int N)
{

GaussJacobiWeights gjw = new GaussJacobiWeights(alpha,beta,N);

double[] points = gjw.getPoints();
double[] weights = gjw.getWeights();
double m= (b+a)/2;
double c= b-m;
double sum = 0;
for(int i=0;i<weights.length;i++)

sum+=f.value(c*points[i]+m)*weights[i];
sum=sum*Math.pow(c,alpha+beta+1);
return sum;

}
}

Code for class RealNewtonRaphson
public class RealNewtonRaphson
{
...

private double[] solvematrix(double[][] A, double[] b)
{

int l=n-3;
double[][] L = new double[l][l];
double[] q = new double[l];
double[] x = new double[l];
for(int p=0;p<l;p++)

L[p][p]=1;
for(int p=0;p<l;p++)

for(int r=p+1;r<l;r++)
{

for(int c=p+1;c<l;c++)
{

A[r][p]=0;
A[r][c]=A[r][c]-L[r][p]*A[p][c];

}
}

for(int r=0;r<l;r++)
{

double sum=0;
for(int c=0;c<r;c++)

sum+=L[r][c]*q[c];
q[r]=(b[r]-sum);

}
for(int r=0;r<l;r++)
{

double sum=0;
for(int c=l-r;c<l;c++)

sum+=A[l-r-1][c]*x[c];
x[l-r-1]=(q[l-r-1]-sum)/A[l-r-1][l-r-1];

}
return x;

}
private double[][] jacobian(double[] funcvalues, double[] x)
{

double[][] jac=new double[n][n];
for(int j=0;j<(n-3);j++)
{

double temp = x[j+2];
double h = TOL*Math.abs(temp);
if(h==0)

h=TOL;
x[j+2]=temp+h; //Reduces floating-point error
h=x[j+2]-temp;
double[] funcvalues2=function(x);
x[j+2]=temp;
for(int i=0;i<(n-3);i++)

jac[i][j]=(funcvalues2[i]-funcvalues[i])/h;
}
return jac;

}

6

...
private double[] function(double[] x)
{

double[] f = new double[n-3];
SchwarzFunction denom = new SchwarzFunction(x,angle,0);
GaussQuad gq = new GaussQuad(denom, denom.alpha(), denom.beta(), denom.a(), denom.b());
double den = Math.abs(gq.integrate(GQN));
double den1 = vertex[1].subtract(vertex[0]).modulus();
for(int i=0;i<(n-3);i++)
{

SchwarzFunction numer = new SchwarzFunction(x,angle,i+1);
gq = new GaussQuad(numer, numer.alpha(), numer.beta(), numer.a(), numer.b());
double num = Math.abs(gq.integrate(GQN));
double num1 = vertex[i+2].subtract(vertex[i+1]).modulus();
f[i]=num/den-num1/den1;

}
return f;

}
...
}

References

[1] Howell, L. H. (1990). Computation of conformal
maps by modified Schwarz-Christoffel transfor-
mations. Retrieved September 28, 2007, from
http://citeseer.ist.psu.edu/howell90computation.html.

[2] Saff, E. B., & Snider, A. D. (n.d.). Funamen-
tals of complex analysis with applications to en-
gineering, science, and mathematics. Prentice-
Hall Engineering/Science/Mathematics.

[3] Trefethen, L. (1979). Numerical computa-
tion of the Schwarz-Christoffel transfor-
mation. Retrieved September 28, 2007, from
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/710/CS-
TR-79-710.pdf.

[4] Press W., Teukolsky, S., Vetterling, W., & Flan-
nery, B. (1992). Numerical Recipes in C, Second
Edition. Cambridge University Press.

[5] O’Connor, J.J., & Robertson, E.F. (2001).
Hermann Amandus Schwarz. Retrieved Novem-
ber 3, 2007, from http://www-history.mcs.st-
andrews.ac.uk/Biographies/Schwarz.html.

7

