
Computer Systems Lab Senior Research
Project Posters

2007-2008
2nd Quarter vers.

TJHSST

May 9, 2008

1

Projects
3rd Period

2

Exploring Artificial Societies Through Sugarscape
Jordan Albright

TJHSST Computer Systems Lab 2007-2008

Abstract
 Agent based modeling is a method used to
understand complicated systems through the
simple rules of behavior which its agents follow.
It can be used to explain simpler systems, such
as the pattern in which birds fly, or more
complicated systems, such as self-segregating
neighborhoods. The systems lend insight into
the way in which they develop. One common
application of agent based modeling,
Sugarscape, developed by Epstein and Axtell,
creates an environment where agents follow
simple survival rules within their society.
Sugarscape allows for analysis of a variety of
trends resulting from the agents interactions,
among which is wealth distribution.

Background and Introduction
Agent based modeling, a bottom-up method

of modeling complex situations, has become a
useful method for simulating problems in the field
of social science. The agents, the main building
blocks of the model, are designed to follow a set of
rules or guidelines. Their interactions result in a
more sophisticated global result. This approach
programming lends itself naturally to social
sciences because of simplistic way in which it
creates societies through its components which are
guided by rules directed at individual interactions
rather than the group. One common simulation
using agent based modeling is sugarscape, which
is comprised of a set of agents who make
calculated moves through a sugarscape a
landscape that varies in the amount of sugar, a
renewable source of energy for the agents,
available at each square in the grid.

Methods and Procedures
The Sugarscape agents behaviors are

specified by a set of guidelines. One of these
guidelines involves searching for food: in each
timestep, each agent determines which patch
or patches of the Sugarscape would be the
best place to move. This is done within each
agents scope of vision, a number specified by
the user (usually between 1 and 10 patches).
The agent then gathers all sugar on the
square, which it stores as energy, and
subtracts from its energy stores various unit of
energy for metabolism.
 At each timestep, the agent may also
reproduce. The user may choose what
attributes of the parent agent will be inherited
by its offspring. There is a switch that allows for
the inheritance of vision and metabolism.
 At each timestep, the agents may also die.
 Each timestep, the amount of sugar in the
patches adjusts to reflect the consumption by
the turtles.
 The wealth of the agents is analyzed using
the Gini coefficient at each timestep.

Results and Conclusions
 If metabolism and vision are inherited, the
Gini coefficient varies by an average of 0.8,
with the average Gini coeffienct over 800
timesteps of the non-inheriance simulation at
0.37 and the average Gini coefficient over 800
timesteps of the inheritance simulation at 0.44.
This reflects a much greater inequality when
the agents are able to inherit the ”genes”–good
or bad–of their parent agents. It is important to
note, however, that the wealth distribution
during inheritance simulations is much more
stable than the wealth distribution of the non-
inheritance simulations.

2
14 26 38 50 62 74 86 98 11

0
12

2
13

4
14

6
15

8
17

0
18

2
19

4
20

6
21

8
23

0
24

2
25

4
26

6
2

78
29

0
30

2
31

4
32

6
3

38
35

0
36

2
37

4
38

6
39

8
41

0
42

2
43

4
44

6
45

8
47

0
48

2
49

4
50

6
51

8
53

0
54

2
55

4
56

6
57

8
59

0
60

2
61

4
62

6
63

8
65

0
66

2
67

4
68

6
69

8
7

10
72

2
73

4
74

6
75

8
77

0
78

2
79

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gini-Coefficient v. Time

Inheritance v. Non-inheritance

GC
GC

Time (timestep)

G
in

i-c
o

e
ffi

ci
e

nt

Figure 1: The simulation system used to animate physically simulated char-
acters. The locomotion controller obtains a desired velocity from the navi-
gation controller and computes the joint positions that will achieve it. The
desired joint positions are passed to the joint controller, where joint torques
are computed to eliminate errors in joint position. The joint torques are used
by the numerical integrator to compute new positions for all the character’s
body parts.

3

CAPTCHA Solving With Neural Networks
Tianhui Cai

TJHSST Computer Systems Lab 2007-2008

Abstract
CAPTCHAs, Completely Automated Public Turing tests to tell
Computers and Humans Apart, are tests to determine if a
user is a human or a machine. Variations include audio and
visual CAPTCHAs, which are often found on registration
webpages to prevent automated (spam) registration. The
focus of this project is on visual CAPTCHAs, which consist of
an image with letters or numbers that are to be typed into
a form by the user. The goal of this project is to devise a
system to break a particular CAPTCHA.

Background
A CAPTCHA's purpose is to distinguish between a computer
and a human by presenting a challenge that is easy for most
humans, but difficult for computers. A common example is the
visual CAPTCHA, which is an image with a series of letters
and/or numbers, and a user is prompted to enter its value
into a box. The image often contains distortions to make it
difficult for a computer to read. These distortions include
rotation, translation, scaling, background noise, and color.

For a computer to beat a CAPTCHA, it must identify which
pixels comprise the letters. This is usually done after
removing the background clutter. After the letters are
separated from the image, they must be identified, which is
often done with a neural network.

Neural networks model biological neural systems. Although
each component is simple, because the entire network is
highly connected, neural networks can model highly complex,
nonlinear systems and can be proficient in classification and
pattern recognition.

Research on neural networks has been in existence for several
decades. In particular, the use of neural networks for
classification has been used. Le Cun et al at AT and T
laboratories has demonstrated that with a particular set of
connections with a multi-layered perceptron, handwritten
digit recognition can be done extremely efficiently.

Procedure and Methods
The general procedure for this endeavor consists of several steps.
The first step is the acquisition of the image, which is done by
downloading them from captchas.net. This particular website
provides a free CAPTCHA service, with a formula to tell you what
an image says. The images were downloaded and named with
ruby, with filenames being the sequence of letters depicted in the
image.

The second step is to remove background clutter. In this particular
case, the CAPTCHAs provided contain a lot of black and white
noise, which can be removed with a median filter. In contrast to a
Gaussian blur, it does not blur the image, thus saving fine details
of the image while removing noise. This is done in Java.

The next step is segmentation – separating out the letters from
the background. This must happen after the removal of the
background clutter. It is performed in this project using flood-fill.
Flood-fill has the advantage that it is simple to code. However, it
will not be useful if two letters are conjoined or if a single letter
is broken up into multiple parts. In this scenario, these are not
significant problems and cases in which this happens are thrown
out. This step is also done in Java.

The last step is the identification of the characters that have been
segmented. This will be done with a neural network – a three-layer
backpropagation neural network. It will first be trained on a
training set, so that it learns how to identify characters.
Afterwards, it will be run to identify images using what it has
learned. A key feature of this neural network must be to save the
network into a file, so that it can be loaded and trained multiple
times.

Results and
Conclusion
This section cannot be completed at
the moment.

Testing
The image processing – noise removal – is tested on sample
CAPTCHA images. It works. Saving the neural network works, too.

A set of 50 training images have been downloaded with filename
as the letters depicted in the images. This works.

The neural network is tested by testing it on simple inputs and
outputs, such as AND, OR, and XOR. This works, too.

The next step is to use the outputs of the image processing and
segmentation as the inputs to the neural network for training, and
then for testing.

4

Excursions into Parallel
Programming

By Michael Chen

November 1, 2007

TJHSST Computer Systems Lab 2007-2008

Abstract:
With more and more computationally-intense problems
appearing through the fields of math, science, and
technology, a need for better processing power is needed in
computers. MPI (Message Passing Interface) is one of the
most crucial and effective ways of programming in parallel,
and despite its difficulty to use at times, it has remained the
de facto standard. But technology has been advancing, and
new MPI libraries have been created to keep up with the
capabilities of supercomputers. Efficiency has become the
new keyword in finding the number of computers to use, as
well as the latency when passing messages. The purpose
of this project is to explore some of these methods of
optimization in specific cases like the game of life problem.

Introduction:
-MPI has high computational power, used in every field for
intense calculations (AI, molecular biology, ecosystems)
-Expansions in library to adjust for use with
supercomputers
-Efficiency becoming an issue with latency v. processing
Power: where is the middle point?

Procedures and Methodology:
-Uses C, C++, and Fortran
-Flexible, not restricted to certain capabilities
-Start with non-mpi code, then convert
-Works very case by case, no general testing program
-Optimization of code depends on a computer’s specific
latency and its processing power. Depending on which
works better, the number of computers best used as well
as amount of passing in code used changes.

Results and Conclusions:
-Many real-life applications
 -blocking vs. non-blocking checkpointing
 -supercomputing
-With the game of life, more factors will have to be
considered than just number of computers: how often to pass
information, and how much information to pass.
-Moving the program from theoretical to the practical
-Latency algorithms for testing possible

Running simulation of game of life with 9 processors

Sample Code:

Diagram of latency vs. processing

void move()
{
if (xs>0)
 MPI_Send(arr,arrsize*arrsize,MPI_INT,rank-1,tag,MPI_COMM_WORLD);
if (xs<sqrt(size)-1)
 MPI_Send(arr,arrsize*arrsize,MPI_INT,rank+1,tag,MPI_COMM_WORLD);
if (ys>0)
 MPI_Send(arr,arrsize*arrsize,MPI_INT,rank-
sqrt(size),tag,MPI_COMM_WORLD);
if (ys<sqrt(size)-1)
MPI_Send(arr,arrsize*arrsize,MPI_INT,rank
+sqrt(size),tag,MPI_COMM_WORLD);

//after sending, all computers waiting for other processes
if (xs>0)
{

MPI_Recv(rec,arrsize*arrsize,MPI_INT,rank-1,tag,MPI_COMM_WORLD,&st
atus);
for (x=amount;x>=1;x--)
 for (y=ya;y<ya+xymax;y++)
 arr[xa-amount][y]=rec[xa-amount][y];
}
if (xs<sqrt(size)-1)
{
MPI_Recv(rec,arrsize*arrsize,MPI_INT,rank
+1,tag,MPI_COMM_WORLD,&status);
for(x=amount;x>=1;x--)
 for(y=ya;y<ya+xymax;y++)
arr[xa+xymax+amount-1][y]=rec[xa+xymax+amount-1][y];
}
if (ys>0)
{
 MPI_Recv(rec,arrsize*arrsize,MPI_INT,rank-
sqrt(size),tag,MPI_COMM_WORLD,&status);
for (y=amount;y>=1;y--)
 for (x=xa;x<xa+xymax;x++)
 arr[x][ya-amount]=rec[x][ya-amount];
}
if (ys<sqrt(size)-1)
{
MPI_Recv(rec,arrsize*arrsize,MPI_INT,rank
+sqrt(size),tag,MPI_COMM_WORLD,&status);
for (y=amount;y>=1;y--)
for (x=xa;x<xa+xymax;x++)
 arr[x][ya+xymax+amount-1]=rec[x][ya+xymax+amount-1];
}
}Portion of move() method from the Game of Life

5

Exploring Genetic Algorithms Through the Iterative Prisoner's Dilemma

Iterative Prisoner's Dilemma

The general Prisoner's Dilemma is a scenario in which there are two
players that can each choose to either cooperate with the other or to defect.
They must each make their decisions without knowledge of the other's
decision. Each player then gets points based on what their decisions were.
The points are given as follows:

Cooperate Defect
Cooperate
Defect

R,R S,T
T,S P,P

The point values must satisfy certain inequalities. In order to be a Prisoner's
Dilemma problem, the inequality R > T > P > S must be satisfied.

In the Iterative Prisoner's Dilemma, the two players go through this
scenario many times, and remember the past. In order to be used for the
Iterative Prisoner's Dilemma, the values must satisfy the inequality 2R > S +
T. The points from each round are added to form a score for each player. I
used the following table, which satisfies both inequalities and is the most
commonly used set of values:

Cooperate Defect
Cooperate
Defect

3,3 0,5
5,0 1,1

Genetic Algorithm

Genetic algorithms are used to find approximate solutions to
optimization problems when the solution would be very time-consuming to
compute. The general layout of a genetic algorithm is:

Initialization of gene pool
Loop over generations

Natural Selection
Selection
Loop over empty slots in population

Recombination
Mutation

There are many ways in which to perform each of these steps. My
program allows the user to select which method to use for each step. In
this way, the different methods can be compared.

The output of my program is a graph of the average fitness value for
each generation (shown below) as well as the numbers represented by this
graph in a text file, so that the graph can be recreated after the program is
closed. I will use these graphs to determine how many generations the
algorithm took to reach the best solution, and compare these among
different algorithms.

6

TJHSST Website Backend Redesign
By Martin Elthon

Abstract
The purpose of this project is a

redesign of the TJHSST website
backend. Through the use of PHP and
MySQL databases, this project will
result in a redesigned administrative
interface for the TJHSST website. The
current state of the TJHSST website is
in a state of disrepair, and web pages
have to be edited manually. To resolve
this, and help with the general overhaul
of the current site, this project will form
the foundation of the future web site.
The current state is in a deteriorating
condition, with system failures
becoming more and more common.

Background
The current state of the TJHSST
website is decrepit. It was written a
long time ago in a language that does
not exist anymore. After a collapse of
the system the previous year, a
"hackish" job was done to bring the site
back online. However, at a sharp
cost--the whole of the core site is not
dynamic. This means that the
administration has to manually edit the
page. Late last year, a team was
formed to redo the current site, and
this project is a large part of that effort.
This project's goal is to provide a new
management interface for the
administration to manage news posts,
and the various dynamic content that
the TJHSST site provides. Written
using PHP, XHTML, and CSS, using
LigHTTPD and MySQL 5 for the web
and database server respectively, this
new site is using the latest web-
development technology. Hopefully,
through careful documentation and
good coding practices, the nightmare
of the current site can hopefully be
avoided in the future.

Analysis and Testing
As of right now, there is only one user of this
back end He is the main user of the current
TJHSST backend, and can therefore provide
useful suggestions as to what features need to
be implemented. Basic testing has been done
with all the features, such as testing
authentication when a user is not
authenticated. Meanwhile during these tests,
the database was monitored for changes, to
see whether a function actually made a
change. The results so far have shown the
software used to be reliable and speedy. Since
the site is under a significant amount of work
every day, it is hard to say the true reliability of
the software itself.

Progress:
Shown above is the visual transformation

of the web site into its current form. The
current features are spell checking, news
management, staff email management, and
account management. There is also a
documentation system called PHPdoc, which
creates javadoc-style documentation.

7

Analysis of Runner Biomechanics Through
Image Processing

Asa Kusuma
TJHSST Computer Systems 2007-2008

Abstract
The biomechanical features of a runner in an image can be
analyzed by using certain image processing techniques, the
primary method being edge detection. By constructing an
accurate, two­dimensional model of a runner’s lower body
from a rear angle, it is possible to extrapolate the underlying
qualities of that runner’s biomechanics. This is done by
creating an outline of a runner's lower leg and feet. An edge
detection algorithm is applied on an image to create this
outline. In this type of situation, algorithm speed is not a very
relevant issue; accuracy is far more important, the reason
being that you only need to analyze a few images to create a
two dimensional model of the lower body, as well as the fact
that the time it takes to analyze a runner does not directly
affect his performance as a runner.

Background
The goal of this project is to analyze images of a runner and
extract biomechanical information about the runner from the
images. Among runners, a major cause of injury is over
pronation. Pronation is the natural inward rolling of the ankle
to absorb impact. All runners should pronate to a degree, but
many runners pronate to much, causing misalignment, knee
problems, and problems with the muscles and ligaments
around the ankle. Using only images, the project will
determine the degree of pronation of a runner, which could be
instrumental in determining the proper shoe type and
diagnosing injuries. The project will strictly be involved in
analyzing images from a controlled environment and
determining biomechanical features from analysis of images.

Methods
Using a camera setup behind a treadmill, images of the runner are
taken (Fig 2). The second step in the process is to get an outline of
the lower leg and feet from an image. Using Gaussian blurring,
noise removing techniques, and outlier removal algorithims, and
edge detection program creates this outline. Once an outline is
made, there are two possible methods for determining the degree of
pronation. The first method, called the angle method, will find the
degree of pronation by determining the general angle of the lower
ankle and foot and comparing it to the angle of the leg. Disparities
in the two angles will conclude either pronation or supernation,
depending on the sign of the angle difference. The second method,
the shift method, is probably the one that will be further developed
in the later stages of the project. This method requires two images,
an image of the runner right before and right after impact. An
algorithm is applied to both images that extracts an outline and the
average x value of the outline (Fig 1). These two values are
compared between each image, and the higher the value, the higher
the degree of pronation. However, the output of this method, the
pixel difference between the two values, is relative to the distance
between the runner and the camera. Thus, it is important to
standardize this distance. To determine this relative factor, the
program will be tested and analyzed on a multitude of neutral
runners, runners with a correct amount of pronation. After storing
the outputs of all the neutral runners, the outlier outputs will be
discarded, and the remaining range of output values will be
designated as the neutral output range. Output values above the
neutral range will be over pronators and output values below this
range will be superantors.

Fig 1: A screen shot of the shift method. Notice the vertical line
representing the average x-value of the edge

Fig 2: The camera setup

8

Particle Swarm Optimization and
Social Interactions Between Agents

TJHSST Systems Lab 2007-2008
Kenneth Lee

Abstract
 Particle Swarm Optimization is a method of
optimization used in n-dimensional infinite search
space problems. This project aims to test different
social influences and topologies, the way in which the
particles communicate with each other in order to find
a global minimum, of the particles and determine their
ability to converge on a correct solution as opposed to
the more common social interaction seen in PSO.
The different versions of the social interactions are
tested against each other using various benchmark
functions based upon iterative cost to run the swarm.

Background
 PSO is a relatively new swarm intelligence
technique. It was first created in 1995, inspired from
flocks of birds and schools of fish. It is considered a
good technique because it is both inexpensive in time
and in memory.
PSO is used for n-dimensional optimization problems,
because it is relatively easy to implement.
 A set of particles is randomly created in the search
space. Each particle is given a random velocity to
move about the search space. Its velocity can be
adjusted during the run by both cognitive and social
interactions. The cognitive interactions involve the
particle remembering where it had the highest fitness
value, and wanting to return there.
 The social influences are where the particle in
influenced based on the other particles, either by their
current position and fitness value or their personal
best (pbest) fitness value.

Results and Conclusions
 The results of the experiment so far are that the
effectiveness of a swarm is very dependent on the
topology of the swarm as they relate to the Rastrigin
function. For instance, though the iterative cost of FIPS
is relatively low compared to the iterative cost of RIPS.
On the other hand, RIPS is substantially more accurate
in determining the correct solution. The answer, as it
stands now, seems to be an attempt to bridge the gap
between RIPS and FIPS, the low k and high k values.
This is seen in DIPS, which while being extremely
accurate has one-forth the iterative cost of RIPS.
 Though research is not yet complete in this field, it
does seem to show promise in continuing to optimize
PSO for all real optimization problems. With the addition
of more benchmark functions in the proceeding paper,
hopefully the results will be more conclusive then at the
current junction.

9

Genetic Algorithms to find Near
Optimal Solutions to the Traveling

Salesman Problem(TSP)

0

2000

4000

6000

8000

10000

12000

14000

The Traveling Salesman Problem (TSP) is the classic nondeterministic
polynomial-time hard(NP-hard) problem. The problem goes as such Given a
number of cities and the costs of traveling from any city to any other city,
what is the cheapest round-trip route that visits each city exactly once and
then returns to the starting city? Although the problem is stated so simply
and discreetly it is in fact a very difficult problem to solve. To simply use
brute force to check all possible solutions it would require a O(N!). This
quickly becomes very difficult to do even for relatively small n. Therefor it
becomes pertinent to find near optimal solutions through other methods using
more realistic times.

The methods which I use to find near optimal solutions to the TSP are
genetic algorithms(GA). GAs are a search technique in computing used for
optimization and search problems such as the TSP. GAs are inspired by
evolutionary biology and incorporate such concepts as inheritance, mutation,
selection, crossover, and reproduction.

Pseudo-code for generic GA
1)Choose initial population
2)Evaluate fitness for each individual in the population
3)Repeat

1)Select the best individuals to reproduce
2)Breed new generations using crossover and mutation
3)Evaluate fitness of the offspring
4)Replace worst ranked part of population with offspring

Fitness Level Verses Time

Sample TSP

Currently I am using a cycle representation of a solution.
This means that I represent each solution as the order in
which it attends the cities. This is not very efficient, but it was
fairly easy to code.
I am currently using single point mutation and double point
crossover. This is how my solutions get better. Eventually I
should work for a double point mutation. If I use a matrix
encoding the double point crossover will be replaced by a
more efficient matrix crossover.
To assess fitness I am currently using the difference between
an individual solution and the worst solution in the current
gene-pool. This ensures that the worst solution in any given
gene-pool does not reproduce. Eventually I want the fitness
be placed on an exponential curve in order for the better
solutions to reproduce more often.

Another method in which I will be employing in order to solve
the TSP will be through Ant Colony Optimization. In ant colony
optimization I use simulated ants which tour through the search
space and leave a pheromone trail. Based on how efficient the
trail is more or less of the pheromone is evaporated. Ants then
stoicastically chose the various trails in order to find a near
optimal solution.

An ant will move from node I to j with probabiliity -

 pi,j = [τij]α[ηij]β
 Σ[τij]α[ηij]β

Psuedo-Code for ACO
 procedure ACO_MetaHeuristic
 while(not_termination)
 generateSolutions()
 pheromoneUpdate()
 daemonActions()
 end while
 end procedure

10

JLSim: Visual Traffic Simulation
Application with Extensive User Interface

Jinyu Liu Pd. 3

Initial Prototype
(C/OpenGL [1st Quarter]

Abstract:
The primary goal of JLSim is to
provide high customizability on the
user-end. Many web applets have
decent traffic simulations, but they
offer minimal user interaction. The
other primary goal is to provide an
accurate simulation that reflects
similarly to what would actually
happen in the real world.

Second Prototype
(Java) [2nd Quarter]

Background/Specification:
Written in Java, this application will
use the Java swing class to
implement to user interface. The
program will be divided into two
halves, the left halve being the
visual part of the simulation and the
right part being the extensive user
interface where users can change
program variables such as number
of cars and traffic light length. (basic
layout seen in screenshots)

Expected Results:
-Realistic simulation of real world
traffic behavior.
-Extensive user interface to change
program variables and design road
networks.
-Crash analysis with independent
probability calculations.(tentative)
-Design mode for developing road
networks.(tentative)

3rd Quarter Prototype

11

Calculating Fractal Dimension from Vector Images
Kelly Ran

FIGURE 1. Examples of fractals

(a) Vector graphics image
(b) Sierpinski Carpet

D ≈ 1.89 FIGURE 2. Zooming in: a comparison of
vector and raster graphics

FIGURE 3. Screenshots of calculating the fractal
dimension of a Sierpinski Carpet

s N(s) log(1/s) log(N(s))

50 117 -1.699 2.068

25 397 -1.398 2.599

12 1414 -1.079 3.150

6 5107 -0.778 3.708

3 19333 -0.477 4.286

FIGURE 4. Graph of data from Table 1. The slope of the linear regression line is equal to
calculated fractal dimension. Percent error is 4.238%.

TABLE 1. Grid size s and number of grid boxes N(s), calculated
from the Sierpinski Carpet in Figure 3

(a) Sierpinski Gasket
D ≈ 1.59

(b) Raster graphics image

All figures and tables by
Kelly Ran

s N(s) log(1/s) log(N(s))

50 24 -1.699 1.380

25 96 -1.398 1.982

12 322 -1.079 2.508

6 1242 -0.778 3.094

3 4968 -0.477 3.696

s N(s) log(1/s) log(N(s))

50 7 -1.699 0.845

25 13 -1.398 1.114

12 25 -1.079 1.398

6 50 -0.778 1.699

3 98 -0.477 1.991

(a) s = 12 (b) s = 3

TABLE 2. Data calculated from a rectangle TABLE 3. Data calculated from a line

Sierpinski Carpet

Linear regression

Slope = 1.8099

R2 = 0.9995

Error = 4.238%

Rectangle

Linear regression

Slope = 1.874

R2 = 0.990

Error = 6.300%

Line

Linear regression

Slope = 0.939

R2 = 0.9993

Error = 6.100%

INTRODUCTION
Fractal dimension is a quantity that can be used as an index of
complexity for fractals. In most research applications, fractal
dimension is calculated using the raster graphics representation
of images. This project investigates an alternative method by
calculating fractal dimension from vector graphics.
The goal of this project is to demonstrate the viability of vector
graphics calculations, to compare vector graphics calculations
with raster graphics calculations, and to display a user interface
that shows the calculations, step-by-step.

BACKGROUND
Fractals and fractal dimension. Fractals, geometric figures that
exhibit self-similarity, are used in myriad applications. They
accurately model many natural objects and phenomena, like
tree branches, jagged coastlines, and particle motion.
Every fractal has a numeric fractal dimension that can be
calculated using several methods. Researchers use fractal
dimension as an index of complexity: it is used for texture
classification in computer vision, protein molecule analysis in
medicine, and plant growth analysis in botany.
Box dimension. To calculate fractal dimension using the box-
counting method, a square grid of size s is superimposed over a
black-and-white image of a fractal object. N(s), the number of
grid boxes that cover the object, is counted. Box dimension D is
calculated using the formula .

D = log(N(s)) / log(1/s)
(1)
It can be seen that fractal dimension is an index of complexity
by examining formula 1: as the scale of measurement s
decreases, one can assess how the measurement N(s) changes.
Graphics representation. Raster graphics is way of representing
images. In raster graphics, images are collections of pixels, and
numeric color values are stored for each pixel. Bitmap (BMP) is
a raster graphics format. Vector graphics is a way of
representing images by using primitives like paths (lines and
curves) and points. Scalable Vector Graphics (SVG) is a format
for creating and displaying vector graphics.
Raster graphics have poor resolution when they are examined
on small scales. Vector graphics, on the other hand, retain
clarity (Figure 2).
In this project, only path primitives were used. Paths consist of
lines and curves. Path data is usually stored in a single attribute,
and consists of commands and coordinates:
d="M 200,66 L 266,66 L 266,133 L 200,133 L 200,66 z “
Commands such as M, L, C, and z indicate what kind of line or
curve should be drawn.
Research applications of fractal dimension use raster graphics
formats. Researchers take digital images (in raster format) and
apply the box-counting method, using many grids of variable
size on the same image. Their data are plotted on an x-y plane,
with log(N(s)) on the y-axis and log(1/s) on the x-axis. Using a
linear regression, they find the line of best fit for the data, and D
is the slope of that line.

METHODS
This presentation uses an example of a Sierpinski Carpet to
demonstrate the methods of the fractal dimension calculator.
Creation of Scalable Vector Graphics (SVG). SVG images of
fractals and non-fractals were created using Inkscape, an open
source vector graphics editor. To make the Sierpinski Carpet
fractal, a black square was cloned 9 times using the “Tiled
Clones” option. The original square and the fifth cloned square
were deleted. The remaining eight squares were grouped
together and treated like the original square. Finally, all of the
squares were transformed from object types to path types.
SVG images were black-and-white, with black representing the
object whose fractal dimension was to be calculated.

METHODS
Calculation of fractal dimension. The Processing language and
environment were used to calculate fractal dimension. The SVG
data file was loaded and parsed into an array of strings (each
line of the file was an element of the array). Using methods
from the Candy library, the SVG image was displayed onscreen.
The functions split(String s), trim(), and
indexOf(String s) were used to process the SVG data file.
Information for each path in the file was stored as an array of
Coordinates, paths.
A global integer was created to keep track of s, grid size. A
nested for-loop created an array, grid, that stored the
Coordinates of each grid box’s upper-left hand corner.
Every element in grid was tested to see if it covered any part
of the black object (in the SVG image). Two methods were
used: case1 and case2. The number of elements in grid
that covered the object was N(s). S and N(s) were stored in an
array called data.
Whenever the button step was pressed, the grid size was
decreased and the counting process was repeated. D, fractal
dimension, was calculated using the 2 most recent additions to
data:
 D = [log(N(s2)) – log(N(s1))] / [log(1/s2) – log(1/s1)] (2)
In the example in Figure 3, error was able to be calculated,
because there is an actual value for the Sierpinski Carpet’s
fractal dimension.

Percent error = |D - Dactual| * 100 / Dactual

(3)
Showing the box method. To show the process of box-counting,
red rectangles were superimposed over the SVG image on the
screen (Figure 3). For every unique s, data were shown, along
with calculated D and percent error.CONCLUSION
Results. This project demonstrated that it is feasible to calculate
fractal dimension from vector images. In the Sierpinski Carpet
example, the calculated fractal dimension had 4.238% error,
using all data points. A rectangle had a calculated dimension of
1.874, and a line had a calculated dimension of 0.939.
The box-counting method of calculating fractal dimension was
shown onscreen.
 Applications. In the future, this vector graphics method of
calculating fractal dimension may be shown to be more efficient
than the raster graphics method. In that case, researchers may
be able to save time by converting their raster images to vector
images and using the vector graphics method.
The properties of vector graphics allow minute image details to
be shown. Researchers may want to find the fractal dimension of
objects that have such minute detail, and using the vector
graphics method may yield the best results in terms of accuracy.
Researchers who use computer models of fractals may choose to
use the vector graphics representation of their models.
Improvements and extensions of the fractal dimension
calculator. The fractal dimension calculator program will be
improved. In this phase, the program can process straight-line
paths from SVG files. In the next phase, it will be able to process
 SVG paths that contain Bézier curves as well as straight lines.
The program will also be able to calculate fractal dimension
from raster graphics, for the purpose of comparing raster
graphics calculations with vector graphics calculations. The
accuracy and efficiency (in terms of time) of both methods will
be analyzed. A verification procedure will be designed to test if
the calculator works properly.
A useful extension of the calculator program will upload many
SVG files at once and calculate fractal dimension without
visually showing the box-counting method.

12

Screenshot

Preliminary Results
 My program accurately represents
projecle moon and collisions with walls
without regard to fricon, and with an
elascity of one. It also detects collisions
between rectangles and can resolve them
to some degree. More work is needed to
finish finish collision modeling.

An Interacve, User-driven Physics Simulator
Tom Smilack

TJHSST Computer Systems Lab, 2007-2008

Abstract
 Physics simulaons are oen of single
concepts or immune to user control. My
project aims to change that by allowing
users to create a situaon and then
simulang the behavior of objects in that
situaon. Users will create objects
ththrough shape tools, then the program
will convert them to polymorphic objects
and run the simulaon. Objects varying
from the simple to complex will be
modeled: single shapes or mulple
shapes connected stacally or with axles.

Background

Input
 Although users cannot draw in my
program, I wanted to employ an intuive
input method. I came up with two
methods of creang circles and one of
creang rectangles. They are explained in
the diagrams below. An image of a cursor
signifies a click, while a line with an arsignifies a click, while a line with an arrow
signifies dragging.

 ASSIST, the program that inspired my
project, was made by a team at MIT. In
ASSIST, the user uses a “sketchpad” system
to draw a situaon, which is then
interpreted and fed into a commercial
physics simulator. It was designed to help
engineeengineers in the beginning stages of
planning a project, when precision maers
less than ideas. My project is similar to
ASSIST but focuses more on the physics of
the user’s situaons than on the sketching
system.

13

PRAM and the Ear Decomposition Algorithm

TJHSST Senior Research Project

2007-2008

Alex Valentin

The History of PRAM How XMT-C Works

PRAM refers to an abstract machine for
designing algorithms in parallel. It allows for an
infinite number of processors that can each
access the same memory in uniform time. The
first known implementation of PRAM is the
University of Maryland A. James Clark School
of Engineering's ParaLeap prototype 64-core
supercomputer.

The language used on this supercomputer is
called XMT-C, eXplicit Multi-Threaded C. Simply,
the language is C with two extra methods,
SPAWN and PS. The spawn method allows the
programmer to use multiple processors. While
any number of processors can be called for, the
computer only has 64 processors to run at any
given moment. The ps method, short for prefix
sum, allows for the different threads to
communicate with each other. The diagram below
shows how XMT-C code alternates between
serial mode and parallel mode.

Abstract

Procedures

Results

This project takes the ear decomposition algorithm for partitioning maps and compares runtime efficiencies of
different implementations. Four implementations are considered. Two implementations are run in a Parallel
Random Access Machine (PRAM), while the other two are run serially. For each of these modes, one
implementation uses only arrays and the other uses structures.

The four implementations were written in XMT-C, even though the serial versions do not use the
parallel capabilities. The Ear Decomposition was broken into three files, a main, span, and link. A
convert file was also created for converting the input data from arrays to structures, if applicable.
The span file finds a spanning tree of the data. The link file labels each edge and node with the
correct ear. The main file runs the span and link files and then prints the ear of each edge and
node.

Input data was given in the form of three arrays, vertices, degrees, and a two dimensional edges
array. This data was quickly made with the help of the memMapCreate32 program in the XMT
environment. Below is a visual of the hexagonal data set. Each data set was run on each of the
four implementations of ear decomposition four times. The clock cycle counts were averaged
and compared. The data is shown in Table 1 (which will arrive shortly.)

The four ear decomposition implementations to be tested are the parallel using structures, parallel
using only arrays, the serial using structures, and the serial using only arrays. The two parallel
implementations should run faster than the serial implementations for obvious reasons. Of the two
parallel implementations, the one using structures is expected to run slower because of the overhead
caused by using structures. Therefore, from fastest to slowest, the implementations are parallel
arrays, parallel structures, serial arrays, and serial structures.

Steps of Ear Decomposition

Input: A bridgeless, undirected graph G

Output: An ordered set of paths representing an ear
decomposition of G

begin

 1. Find a spanning tree T of G

 2. Root T at an arbitrary vertex r, and compute
level(v) and p(v), for each vertex v ≠ r, where level(v)
and p(v) are the level and the parent of v, respectively.

 3. For each nontree edge, e= (u, v), compute
lca(e)= lca(u,v) and level(e) = level(lca(e)). Set
label(e): (level(e), s(e)), where s(e) is the serial
number of e.

 4. For each tree edge g, computer label(g).

 5. For each nontree edge e, set Pe = {e} U {g |
label(g) = label(e) }. Sort the Pe’s by label(e).

end

PRAM and the Ear Decomposition Algorithm

TJHSST Senior Research Project

2007-2008

Alex Valentin

The History of PRAM How XMT-C Works

PRAM refers to an abstract machine for
designing algorithms in parallel. It allows for an
infinite number of processors that can each
access the same memory in uniform time. The
first known implementation of PRAM is the
University of Maryland A. James Clark School
of Engineering's ParaLeap prototype 64-core
supercomputer.

The language used on this supercomputer is
called XMT-C, eXplicit Multi-Threaded C. Simply,
the language is C with two extra methods,
SPAWN and PS. The spawn method allows the
programmer to use multiple processors. While
any number of processors can be called for, the
computer only has 64 processors to run at any
given moment. The ps method, short for prefix
sum, allows for the different threads to
communicate with each other. The diagram below
shows how XMT-C code alternates between
serial mode and parallel mode.

Abstract

Procedures

Results

This project takes the ear decomposition algorithm for partitioning maps and compares runtime efficiencies of
different implementations. Four implementations are considered. Two implementations are run in a Parallel
Random Access Machine (PRAM), while the other two are run serially. For each of these modes, one
implementation uses only arrays and the other uses structures.

The four implementations were written in XMT-C, even though the serial versions do not use the
parallel capabilities. The Ear Decomposition was broken into three files, a main, span, and link. A
convert file was also created for converting the input data from arrays to structures, if applicable.
The span file finds a spanning tree of the data. The link file labels each edge and node with the
correct ear. The main file runs the span and link files and then prints the ear of each edge and
node.

Input data was given in the form of three arrays, vertices, degrees, and a two dimensional edges
array. This data was quickly made with the help of the memMapCreate32 program in the XMT
environment. Below is a visual of the hexagonal data set. Each data set was run on each of the
four implementations of ear decomposition four times. The clock cycle counts were averaged
and compared. The data is shown in Table 1 (which will arrive shortly.)

The four ear decomposition implementations to be tested are the parallel using structures, parallel
using only arrays, the serial using structures, and the serial using only arrays. The two parallel
implementations should run faster than the serial implementations for obvious reasons. Of the two
parallel implementations, the one using structures is expected to run slower because of the overhead
caused by using structures. Therefore, from fastest to slowest, the implementations are parallel
arrays, parallel structures, serial arrays, and serial structures.

Steps of Ear Decomposition

Input: A bridgeless, undirected graph G

Output: An ordered set of paths representing an ear
decomposition of G

begin

 1. Find a spanning tree T of G

 2. Root T at an arbitrary vertex r, and compute
level(v) and p(v), for each vertex v ≠ r, where level(v)
and p(v) are the level and the parent of v, respectively.

 3. For each nontree edge, e= (u, v), compute
lca(e)= lca(u,v) and level(e) = level(lca(e)). Set
label(e): (level(e), s(e)), where s(e) is the serial
number of e.

 4. For each tree edge g, computer label(g).

 5. For each nontree edge e, set Pe = {e} U {g |
label(g) = label(e) }. Sort the Pe’s by label(e).

end

Below is a simple XMT-C program that takes array A of length N
and compacts its data into array B. N, Array A, and array B are
declared in the header data.h.

#include “data.h”
#include <xmtc.h>
psBaseReg base;
int main()
{
base = 0;
spawn(0, N-1)
{
int step = 1;
 if(A[$] != 0)
 {
 ps(step, base);
 B[step] = A[$];
 }
}//end spawn
}//end main

The spawn method takes two integer arguments, which identify the
range of the thread ids, inclusive. The id is referenced with the
dollar sign, $. The ps method also takes two arguments, a local
integer and a global psBaseReg. The local integer (step in the
example above) is set to the global psBaseReg (base in the
example above) and the psBaseReg is incremented by the size of
step. Essentially, the ps method acts as a global counter without
having to worry about concurrent writes.

14

