
Computer Systems Lab Senior Research
Project Posters

2007-2008
2nd Quarter vers.

TJHSST

May 8, 2008

1

Projects
5th Period Project Posters

2

Artificial Intelligence:
Crowd Dynamics using Particle Swarm Optimization

Keith Ainsworth
Computer Systems Research Lab

2007-2008

Abstract

Artificial Intelligence has for long been an important
aspect of computer science, but unfortunately artificial
intelligence is usually computed from a single agent
perspective or with multiple, but highly omniscient agents.
I plan on creating an artificial intelligence engine, which
works by having multiple agents, each with highly limited
perspective. In order to solve tasks, they need to
communicate their portions with each other through a
network. Using that scheme, it will much more accurately
simulate crowd dynamics, using particle swarm
optimization to optimize the calculations.

Person

PNetwork World

weight_list

Class Diagram

Introduction

The AI engine I'm programming is implemented through
C++'s object orientation. I have programmed several
classes which interact in order to make a completed end
project. As my engine is an agent based networking engine,
naturally the first two classes are the agent, Person, and
network, PNetwork classes. The main program must include
an array of Persons, which is passed to the PNetwork class
on instantiation. Then the main program only needs to talk
to the PNetwork, as its managing the list of people from
instantiation on, and will take care of the movement of the
Persons.

The Person and PNetwork also utilize another class I've
written, the weightlist class. This class is a set of two array
based, fixed size, looping lists; one for data, the other for
the data's relative weighting. The important feature of the
weightlist that other pre-written container classes don't offer
is a summation function. This function effectively averages
the data list, based on the relative weightings, and a decay
weighting that favors the more recent entries in the list. This
is crucial because the communication aspect of the
PNetwork has to have a way of keeping track of each
Person's communications. Therefore each Person in the
PNetwork is assigned a weightlist. When the PNetwork is
called to iterate, it calls the communicator functions in all
the Persons, and adds the message to the weightlist of
every other person, assigning the weighting based on the
distance the message had to travel (the distance between
the two agents). Then each weightlist is summed and the
results are given to their respective Persons as their new
prospective direction.

Methods

Expected Results

To program this engine, along with the accompanying
game (for graphical output reasons) I'll need C++ (and
therefore the g++ compiler) along with the SDL (software
digital layer) libraries, for keyboard input and graphical
output, and I'll be using OOP programming (therefore the
gcc compiler won't be sufficient) and PSO for optimization.

I've programmed this project so far with several
debugging features and text based outputs for constant
error checking. While for the final project these would be
commented out for the final compilation, I plan to continue
programming with those features to allow for ease of code
writing and testing. Right now I'm using a series of testing
shells to assess the resilience of my AI system. I have
shells which print out pixels for each agent in the
simulation, using SDL, which work for the regular PNetwork
and ngon world classes. These automated tests inform me
whether the program is doing what it should be.

This should create a real time multiple agent based,
crowd dynamics computing artificial intelligence engine,
which will be applied to a game to create realistic
simulations of groups of people.

Seniors next year attempting to create a program that
utilizes different artificial intelligence schemes, could use
this as one of them to compare and contrast effectiveness
and speed.

3

Elementary Education in a Technology Age
By: Gregory Gates

Computer Systems Lab Research Project 2007-2008
April 4th, 2007

 Abstract
 Technology becomes more advanced and more accessible with
every passing day. Education should be utilizing this technology boom
in teaching current students. However, this does not seem to be the
case. The goal of this project is to try and implement computer
programming, through Scratch, as a tool for educating students.
Computer science education at a younger age becomes more and
more essential as computers become more advanced and more
accessible with each passing day.

Background Information
The task of educating the younger generations about programming has been
attempted before. The first attempt to create a kid-friendly programming
language was Logo, made by Wally Feurzeig and Seymour Papert. This
programming language mainly involved telling a turtle how to move around
in order to make various pictures with the turtle’s ”pen.” Since then, multiple
programming environments and languages have come about to try and engage
not only youth but also girls in computer science and programming such as
Squeak, Alice, and Scratch (Papert, 1993).
 Despite the bountiful number of tools that modern technology gives us for
teaching students, little progress has been made for teaching computer
science at the elementary school level. The necessary technology is present in
the schools, but it is only being used to reinforce outdated teaching methods.
Currently, computers are mainly being used as a medium to transfer
information, much like a television. Computers have so much more potential
than that. They should be used as a universal construction material, not
as a TV screen. Programs like Scratch enable kids to create whatever they
want to all by themselves. Children learn better by immersing themselves in
whatever they’re doing, rather than just listening to a teacher telling them
what to do (Papert, 1993).
 The goal for this project is to establish something akin to a Compute
Clubhouse at Cardinal Forest Elementary School. The original Compute
Clubhouse was started by the Massachusetts Institute of Technology in
Cambridge in 1993 to ”provide more young people with the opportunity to
become digitally fluent” (Resnick, 2002). At these clubhouses, kids and older
youth ”become designers and creators with new digital technologies.
Clubhouse members use leading-edge software to create their own artwork,
animations simulations, multimedia presentation, musical compositions,
websites, and robotic constructions.” (Resnick, 2002)

Current Situation
Students have finally begun to work on their own individual
projects, and a couple of them even claim to be finished! After
taking about a two week break from any specific teaching, I
introduced the Scratch-unique concept of broadcasting to the
students in order to aid them in the creation of their programs. A
majority of the student programs, rather than being user-
interactive, try to tell a simple story or depict a simple interaction
scene between a few sprites.

Implementation
 Students from first through sixth grade meet in the

“Cardinal Computer Lab” at Cardinal Forest Elementary School
every Thursday sometime between 11:00 AM and 2:00PM.
Each class lasts for 30-45 minutes depending on the age of the
kids in the class and the schedules that the teachers have laid
out. The tech specialist at the elementary school and I alternate
the weeks that we teach. Topics that have been covered thus
far include: the coordinate axis, x-y coordinates, angles and
degrees, if-then statements, basic loops, custom sprite/stage
creation, and sprite interaction. Obviously, the
topics include more than just computer science.
 For the first three monthsMr. Allard (the tech specialist at
the elementary school) and I spent a majority of the lesson time
teaching the students and walking them through a simple
project. The end goal is to give the students a broad category
or theme (i.e. celebrations or sports) and let the students create
their own projects. We have recently entered this “individual
work” phase. By letting them work on their own, we hope to
increase not only the students' creativity but also their
independence. If the students teach themselves and work
through problems on their own, they will have a better
understanding of the subject matter.
 Lastly, group projects will be given to promote teamwork
amongst the students. These children come from many different
classes and grades and they don't know each other very well,
so getting along initially may be difficult. However, working in
teams is an essential skill not only for computer scientists but in
any job and our goal is to give these students a strong
foundation for working in groups in the future.

4

Example Student Research Project
Student Name – Phillip Graves NEEDS ACTUAL POSTER

THIS IS A SAMPLE GENERIC POSTER
TJHSST Computer Systems Lab 2007-2008

Abstract
Provide in the Abstract section an overview of the research
project. The challenges of this project are... The focus of this
project is ... The goal of this project is to ... The results show
that ...

Background
Provide in this section background information that clarifies the
project’s material.

You can have more than one paragraph of background
information...

Paragraph 2 of background information...

What previous research has been done in this area...

Procedure and
Methods
The general procedure for this endeavor consists of several steps.
The first step is ...

The second step is to ...

The next step is ...

The last step is ... Afterwards, it will be run to ...

The project is written in ...

Results and
Conclusion
What have your tests and analysis
demonstrated...

Testing
How are you testing various parts of your project in order to
verify your results...

... is tested by ...

The next step is to use the outputs of ... as the inputs to ...,
and then for testing ...

5

Development of an OCR System
Nathan Harmata

TJHSST Computer Systems Lab 2007 - 2008

Abstract

OCR (Optical Character Recognition) is a
very practical field of Computer Science.
Since the late 1980's, researchers have
been developing system to identify text
from non electronic sources, such as
pictures or newspapers. The use of OCR
systems has spanned from making books
in Braille to sorting mail by zip code.

Background

Although there are a few options currently
available to the public, like Microsoft
Document Imaging, most of them are
either unused or not accurate enough.
The goal of this project is to create an
OCR system that is simple to use and can
handle most formatting and fonts.

Then, each letter is converted into a form
called a “CharacterModel.” Each model is
a collection of “attributes,” currently
consisting of a “SectorVector” and a
“GapVector.” A SectorVector is formed by
parsing the image into portions that pass
the vertical line test. After getting rid of
unnecessary information, each portion is
then transformed into a sum of line
segments of different slopes.

Results

The result is that a letter is simplified into a
few pieces of generic information. This
procedure is applied to each letter of
several different fonts, and information from
the results is stored and averaged. Using
this, a cache is created to which results
from OCR analysis can be dynamically
compared.

Procedures

The input for the current prototype is a PNG
picture file that contains text in the Courier
font. Using the Java BufferedImage class,
locations and colors of the pixels in the
image can be determined. The program
uses these to find the positions of
horizontal straight lines of whitespace in the
image. It pairs together lines of whitespace
and ignores those so that only lines of text
remain. Each line is parsed into words
using a similar method involving vertical
lines. After making spacing analysis, each
word is parsed into letters, as seen below.

A GapVector is simply a collection of the
locations of visual “gaps” in the image.
Gaps can exist on the four sides (top,
right, bottom, and/or left) of the image.

c SectorVector -2 3 GapVector R

6

Using Genetic Algorithms to Optimize
the Traveling Salesman Problem

By: Ryan Honig

Abstract
My goal is to create a program that can

solve the Traveling Salesman Problem,
finding near-optimal solutions for any set of
points. I will use genetic algorithms to try to
find the optimal paths between the points. I
would also like to expand my algorithm so that
it can solve both symmetric and asymmetric
problems. In the end, after I create a working
algorithm that will find near optimal paths, I
hope to create a graphic interface that will
display the chosen points and the paths
through those points as the algorithm runs.

What is the Traveling
Salesman Problem

Traveling Salesman Problem (TSP) - a set of
points is given. Try to find the shortest path
that travels between each point once and
returns to the starting point

Symmetric TSP - distance between towns A
and B is the same as distance between towns
B and A.

 Asymmetric TSP - distance between towns A
and B is different from distance between
towns B and A.

Background
●Purely genetic approaches can find near optimal solutions, but take a
long time
●Purely heuristic approaches can run very efficiently, but don't find very
optimal solutions
●Many of the current best known solution algorithms use a combination
of heuristics and genetic algorithms

Development
●I have a genetic algorithm that creates a pool, and then
uses genetic crossovers within the pool to find the best
solution
●I also have a mutation function that has a one in fifty
chance of adding a variation into the pool by reversing a
segment of a path, this helps to keep the pool from getting
filled by copies of the same path
●I also created a heuristic that creates a better pool than
the randomized pool, although it runs much slower
●During third quarter, I began work on converting my
random pool program so that it can find near optimal
solutions to asymmetric traveling salesman problems

Results

●As you can see from my data, while the heuristically-generated pool
program found slightly better solutions on most of the data sets, with
the exception of data set ATT48, on every case it took almost twice as
long to run than the randomly generated pool program did. I am
currently not sure whether I will stick to using the randomly generated
pool program or the heuristically generated pool program.

A AB B

C C

D D

E E

Parent A Parent B

A B

C

D

E

A

A A

A
A

B

B

B

B

B

Combined Path

B

A B

C

D

E

A

A

B

B

Child

How My Genetic
Algorithm Works

Average
Run Time

Average (of
5 runs)

Average
Run time

Average (of
5 runs)

Data Set /
Best solution

Heuristic ProgramRandom Pool Program

A280: 2579

ATT48: 10628

BAYG29: 1610

BAYS29: 2020

CH130: 6110

 2780.54

12017.46

1750.92

2385.34

6493.65

 2729.37

12104.32

1683.84

2327.77

6387.37

1.75 sec

2.31 sec

1.33 sec

1.86 sec

2.76 sec

3.03 sec

4.71 sec

2.42 sec

2.81 sec

4.54 sec

Testing the random-pool program against the Heuristically
generated pool program

Symmetric
A BDistance = 100

Distance = 100

Asymmetric

A BDistance = 100

Distance = 200

7

3D Collision detection for N
Solids in Open GL

Abstract
Collision detection is a very useful concept, it
is used in various applications from surgery to
manufacturing to video game design. My
project aims to create an efficient algorithm for
detecting collisions so that it can be used in a
gaming environment. The objects in collision
will be simple solids, and multiple will be put in
a space to monitor their interactions. The first
step is simple 2D collisions followed by more
complex 3D collisions.

Introduction
In this project, I plan to create an efficient
algorithm for 3D collision detection. This
project has value, because there are many
different applications for collision detection,
and in game development, as with all other
fields, efficiency is of extreme importance.
Collision detection is the concept of first
detecting possible collisions, then contact,
and then determining how to react to the
collision. I intend to create an efficient
algorithm that would detect collisions, so that
the interactions of multiple solids could be
modeled at once. The first step is to create a
simple 2D algorithm that would model
collisions as a prototype, followed by a
simple 3D algorithm. This would then be
optimized or redesigned, and then the
number of solids in the given space would be
increased, and the time taken and accuracy
would be tested. The goal is to have the
number of solids in space to be in the
thousands, but the first benchmark would be
in the hundreds.

Development
This project is an effort to create a fast and
efficient collision detection algorithm. Success
would be considered a working algorithm that
can successfully detect collisions for one
hundred solids (although one thousand would
be preferable). Anything less would be
considered a failure.
The language used would be C using OpenGL,
because C is a powerful language, and OpenGL
is an easily accessible graphics library.
The workplan for the project is as follows: write
a 2D algorithm, then write a 3D algorithm, then
optimize the 3D algorithm or rewrite it to meet
any time constraints.
So far the 2D and 3D algorithms have been
completed, and the next stage is to optimize the
3D algorithm. Unfortunately the current
algorithm is not very robust and only works with
certain solids. This problem will have to be
remedied before the project can continue.

Richard Hooepr

8

Prisoner’s Dilemma with Optional Cooperation and N
Participants

Prisoner's Dilemma with Optional Cooperation and N Participants
Matt Lee

TJHSST Computer Systems

Abstract
This project is designed to simulate

the classical Prisoner’s Dilemma with a
large number of participants and set
options to cooperate with others or not.
 The purpose of this project is to allow
the Prisoner’s Dilemma to have
variable parameters so that a variety of
situations and settings could be tested.
 The result that is expected is a variety
of simulations that will show how a
specific situation can turn out when
given options to cooperate, backstab,
or ‘join forces’.

Background
The Prisoner’s Dilemma has been

implemented a large number of times. There
have even been competitions held to see who
could make an algorithm that would maximize
the payout for their specific participant. As
stated by Robert Axelrod, the author of ‘The
Complexity of Cooperation’ the best strategy for
maximizing payoff is to use ‘tit for tat’. Tit for tat
is a strategy where the participant mimics the
last move played by the opponent, which in the
long run, enables the user to maximize his
payout at the end of the ‘game’ of Prisoner’s
Dilemma. However, interestingly enough, when
both participants initiate tit for tat, it doesn’t
become the optimal strategy. From here, a large
number of variations have been made to the
Prisoner's Dilemma, including implementing “N”
participants instead of just two.

Progress
The options to choose strategies and

make a number of opponents have been
added to the program. The Prisoner
class has undergone some changes
including changing string identification to
integer identification and the addition of
a new method. The program itself has
several variations of Tit for Tat added
into it as well at this point.

– if(turn!=0)
 {

 while(run<size)
 {
 if(run!=IDtag)
 {
 Boolean
desu=(Boolean)list.get(run);
 boolean desu2=desu.booleanValue();
 if(desu2==false)
 falsers++;
 else if(desu2==true)
 truers++;
 }

 run++;
 }
 if(falsers>=truers)
 player.setDecision(false);
 else if(falsers<truers)
 player.setDecision(true);
 }
 else
 player.setDecision(true);

 /*while(counter<size)
 {
 prisoner player2=(prisoner)
list.get(counter);
 if(player2==player)
 {
 break;
 }
 else
 {
 boolean oppDeci=player2.getDecision();
 player.setDecision(oppDeci);
 }

Results
The results I expect are a variety of scenarios to be implemented by the Prisoner's

Dilemma that will include “N” participants of the user's choice and option to enable
morality.

9

Pathfinding Algorithms for Mutating Graphs

Haitao Mao
Computer Systems Lab 2007-2008

Abstract

Algorithms

Background

Results and Conclusions

Consider a map of an unknown place represented as a
graph, where vertices represent landmarks and edges
represent connections between landmarks. You have current
information on the time it will take to travel between landmarks,
as well as an archive about how the travel times changed
through the past. You have a preset destination that you want to
reach as fast as possible. Pathfinding algorithms for static
graphs involve computing the whole path from start to
destination, but if the weights are rapidly changing due to some
extreme condition of the place, then calculating the whole path
in the beginning will not be feasible. The purpose of this project
is to design and compare different pathfinding algorithms for a
graph whose edge weights mutate randomly to a significant
extent. Algorithms may involve probabilistic analysis, dynamic
programming, heuristics, genetic programming, and variations
of standard shortest-path algorithms such as Dijkstra's
algorithm.

For this problem, the structure of the graph will be static;
that is, no vertices or edges will be added or removed. Only
the edge weights will be dynamic, and they must change to a
significant extent for the algorithm to be effective. If the
mutations are negligible, then a standard shortest path
algorithm will also serve as a pathfinder. Also, the mutations
should form a pattern or probability distribution. The algorithm
relies upon observing previous mutation to predict future
mutation, so the two must be interdependent.

In this project, several simplifications to the general
problem will be made for easier simulation. In any simulation,
mutation must be discretely quantified. Here, mutation will be
quantified in time steps, and every edge will take one time
step unit to traverse. Hence, edge weights will not represent
time but instead some generic cost. In a travel analogy where
edges represent roads and vertices represent cities, road
condition changes due to weather would be a time-based
mutation, but if each road section had a toll that changed
every hour, and everybody traveled at a constant speed, then
it could be accurately modeled with a mutating weight graph.
Edge weights must remain positive doubles. If the mutation
renders the weight too large, then it will be reverted to the
maximum double value, and similarly for weights too small.
Also, the algorithm design will be tailored towards mutation
which is essentially random, where the edge weight mutation
is only dependent on the edge weight of that edge at the
previous time step. Specifically, the mutation is assumed to
be independent of time, graph structure, and other edge
weights.

As of now, the algorithm runs a lot better than an algorithm
that doesn't take mutations into account, such as Dijkstra's
algorithm, would. For every case tried so far, the proposed
algorithm has reached the end with a significantly lower cost
than the Dijkstra would have. This difference sometimes got as
high as a factor of 5, because the Dijkstra pathfinder would
often get stuck in choke points because the path it found earlier
has changed and one of the edges no longer exists, sometimes
forcing it to go back on itself. When Dijkstra's goes back on
itself, it automatically wastes two turns' worth of time and cost
and gets nowhere. However, the chance that our algorithm
wastes time and cost is much, much lower due to its ability to
predict mutations. Sometimes it will count on a edge becoming
available in order to progress, but these assumptions are
completely reasonable because either the path is far away and
will have a lot of time to mutate, or has been seen as drastically
changing from its history data. The algorithm can also detect
when it may get stuck and avoid paths that may cause it to be
stuck for long periods of time. Note that these are not really
results, just the current progress. Add results next quarter.

Define randomized distance as the distance to destination
node taking graph structure into account. For example, a vertex
with two unit length paths leading to the destination will be
closer in this sense than a vertex with only one. We use steady-
state convergence by creating a system of equations that the
randomized distances should satisfy, and then approximating
the solutions repeatedly until the results converge. We use
dynamic programming to approximate distance to heuristically
closer points first, then base calculations for farther vertices on
these approximations. We use the previous states of the graph:
we can use this data to develop a hashmap to approximate
future mutations. We use genetic programming to find optimal
values for algorithm-specific variables. We focus on sparse
graphs, graphs where the number of edges is significantly less
than the square of the number of vertices. The edge weights
are limited to positive doubles so mutation will be somewhat
controlled; edge weights that are too large will never be
traversed anyway. Complexity will be limited to $O(EV)$.

S

E

Example graph

10

Sugarscape: An Application of Agent Based
Modeling
Andy Menke

TJHSST Computer Systems Lab 2007-2008
 Abstract: Computer scientists have

long tried to simulate things like life
or human culture with computer
programs. Agent based modeling is
an effective strategy for this using
the idea that many complex
phenomena come from the
interactions of simpler pieces.
Sugascape is an implementation of
agent based modeling that
simulates human society and
culture.

 Background: Agent based
modeling is a technique that
simulates seemingly complex
relationships through the
interactions of “agents” that follow
simple rules. One of the first and
most effective uses of this was in
the creation of “boids,” a program
that simulates the flocking of birds.
Sugarscape, in particular, recreates
human society through the
interactions of agents that travel
around the map (scape) looking for
sugar.

 Techniques: Object oriented
programming is a technique well
suited to agent based modeling.
Each agent is an instance of either
the Agent or Breeder class. The
scape itself contains 2500
instances of the Location class,
each keeping track of what goes on
at a given location. The graphics
are run by the ScapeG class, and
the user interface has its own set of
classes.

 Conclusions: I expect to first
recreate the results given in
Growing Artificial Societies, the
book that set forth the ideas of
Sugarscape. If I can do that, I will
extend my project to cover areas
the authors did not get to, such as
warfare.

An empty scape created by my program. A
Larger yellow circle means more sugar at
that location.

A Boids implementation

11

Playing God: The Engineering of Functional Designs in
the Game of Life
Liban Mohamed

Introduction

Conway's Game of Life is a set of rules in a two dimensional cellular automata grid. This
ruleset was specifically chosen by John Conway for the ability to create stable
patterns as well as the difficulty of creating patterns which grow without bound. This
difficulty was rather quickly overcome by Bill Gosper's glider gun, which opened up
the ability to create binary computational devices such as logic gates. As soon as the
possibility of binary computational devices in the Game of Life was discovered, it was
realized that patterns could be designed in the Game of Life which could symbolically
carry out computations. This project endeavors to facilitate in the design and creation
of functional patterns in the Game of Life.

Abstract

First, this project endeavours to create a flexible and powerful Game of Life interface. After
that is achieved, this project goes on the create search programs for patterns in the
Game of Life. Finally, this project intends to use the functionality enabled by the
previous two steps to design a pattern which can be used for computation in the
Game of Life. That is, the purpose of this project is to create one or more patterns in
the game of life which take an input in the game of life and consistently produce an
output which can be interpreted to get the right answer.

Procedures

The procedure followed in this project was to first create the programs necessary for
the design and creation of functional programs in the Game of Life, and then to use
these programs to actually create such a pattern.

Conclusions

Conclusions forthcoming

12

Procedural Generation and Terrain Procedural Generation and Terrain
Rendering in a 3D GameRendering in a 3D Game

Justin Warfield- Period 5
TJHSST Computer Systems Lab 2007-2008

Abstract:
The goal of this project is to create a basic 3-dimensional video game

utilizing several techniques (especially fractal geometry, multi-variable
algebra, and statistical analysis) to procedurally generate terrain and game
environment and render them in an efficient and effective manner.

Background:
Many techniques are out there for creating random terrain,

which seems to be the most common use of procedural
generation. Fractal geometry is widely used in such algorithms.
Similar techniques are commonly used to create random
textures, such as cloudy skies and ground. The unreleased
game, Spore, is expected to be groundbreaking in the area of
procedural generation, using procedural algorithms to create
3D creature models and animations. The use of 3D equations
to model terrain seems to be seldom use and research is
lacking, but the speed and potential of terrain functions has
drawn me to the use of multi-variable equations. Hopefully my
program will be completed implementing procedural generation
in a new way, paving the way for further testing and
experimentation. As of now, most of my research energies have
been spent learning OpenGL and its GLUT library, but I’ve
found a few articles on gameprogrammer.com and the Intel
website.

Procedures/Methods:
Using OpenGL and Python (and the OpenGL binding for

Python, PyOpenGL), the first step was to create a generic 3D
game. A basic framework has been created for an interactive
game environment with enemies and bombs. After attempting the
use of fractal geometry to generate global terrain patterns, this
has been determined to be too slow (almost 10 frames per
second) to generate a minimum area. Multivariable equations may
be better suited to generate terrain, with pseudo-random results.
The use of an equation of order 1 to determine terrain would be
much faster than current techniques. Testing wouldn’t be clear cut
for such a program. I need to make sure what’s generated is both
random and realistic, which are not easily quantifiable
measurements. Human testing would be most effective.
Examination of different terrain equations is done using a java
program that can generate an interactive height map, and the
height map included in the game. Realistic environments are
being added, but not yet effectively.

Expected Results:
Results can be presented in several ways. Comparison of

various techniques would be effective. File size is also a good
measurement for how much of a video game is procedurally
generated (the smaller the file, the more game content is
generated during game play). So far, lines of code and fps has
shown that multi-variable equations are far more efficient than
geometric techniques.

Use of a circular rendering area with decreasing detail with
increasing area has been effective, and textures make the seams
undectectable.

Conclusion:
In the end, even if my ultimate goals are not realized, I will

at least have contributed minor tweaks and ideas to the field of
procedural generation, and hopefully even applied procedural
generation to an entirely new area, paving the way to a wider
range of applications. Even if my contributions are minor and
don’t meet my expectations, hopefully they will build upon
current techniques and allow later programmers to further build
upon my findings.

13

Interactive Geometry in 3D
Jacob Welsh

TJHSST Computer Systems Lab 2007-2008

The goal of this project is to write a program
that allows its user to create and manipulate
a complex system of geometric objects in
space. From a few basic object types,
interesting and useful constructions can be
built. This could be useful for education,
mathematical or scientific research or
visualization, or just for fun.

Abstract

A screenshot showing points and line
segments, created by clicking in various
locations on the screen in Point and Line
modes. The points can be selected and
dragged with the mouse, and the lines are
redrawn accordingly.

Background
For a while there has been software for
computer assisted design (CAD), which utilizes a
few basic shapes and techniques such as
snapping and numeric entry to create precise,
polished diagrams of a product that can then be
used in its manufacturing.

A similar sort of program is used for 3D
modeling, in which the user constructs polygon
meshes in three dimensions: freehand; with
snapping; and numerically. My program aims to
be more focused on geometric objects and
dynamic preservation of their relationships as
some are manipulated. The leading example of
this is a commercial program called The
Geometer's Sketchpad. However, its interface is
rather clunky, and it is limited to two dimensions.
However, the fact that it is possible to build
primitive 3D constructions in it illustrates the
power behind the idea of geometric construction.
The basic philosophy for the user interface of my
program comes from the modeling program
Blender and the text editor Vi.

A schematic diagram showing the internal structure of geometric
objects, and the structure that stores them for display and
calculation purposes.

14

 Development of a German-English Translator
 Felix Zhang

 TJHSST Computer Systems Lab 2007-2008

Background
Rule-based translation is the oldest form of
language processing. A bilingual dictionary
is required for word-for-word lookup, and
grammar rules for both the original and
target language must be hardcoded in to
structure the output sentence and create a
grammatical translation. Most online
translators currently are based off of rule-
based translation systems. Statistical
machine translation is based off of a
bilingual corpus, which the program uses
to “learn” the language. It is much more
flexible, being language-independent, but
much harder to implement.

Machine language translation as it stands today relies primarily
on rule-based methods, which use a direct dictionary translation and
at best attempts to rearrange the words in a sentence to follow the
translation language’s grammar rules to allow for better parsing on
the part of the user. This project seeks to implement a rule-based
translation from German to English, for users who are only fluent in
one of the languages. For more flexibility, the program will implement
limited statistical techniques to determine part of speech and morphological
information.

Development
The main components to a rule-based
translator are a bilingual dictionary, a part
of speech tagger, a morphological
analyzer that can identify linguistic
properties of words, a lemmatizer to break
a word down to its root, a method for noun-
verb agreement, an inflection tool, and a
parse tree. Statistical part-of-speech
tagging is implemented with a large
German word corpus, with a part of
speech assigned to each word. The
program determines the most likely tag by
checking the frequency of each tag's
occurrence.

Results
I will run my program on a series of input German sentences, and
print out the results, with a correct translation for comparison of
accuracy in translation and tagging. Statistical tagging should
approach 90% accuracy when each word is simply assigned its
most frequently occurring tag. Rule-based methods should only
function correctly with grammatically correct sentences in “normal”
sentence order, with words in regular positions – Subject, verb,
object.

Figure 1: Dictionary.

Figure 2: TIGER Tagged Corpus.

Figure 3: Running version of program.

Grammar
In rule-based machine translation, parsing is
the most difficult method to implement. In
order to restructure simple German
sentences to English ones, I assigned a
priority number to each noun phrase chunk,
based on where the chunk would appear in a
n English sentence. The program then sorts
based on priority number to restructure.

15

