
Computer Systems Lab Senior Research
Project Posters

2007-2008
2nd Quarter vers.

TJHSST

May 8, 2008

1

Projects
6th Period Project Posters

2

3

A Dynamic Model of
Human Populations

Abstract
The world is becoming better interconnected.
As more and more people in developing
countries seek to live in economically secure
ones, less and less people stay in their own.
This constantly changing flux of movement
highlights just how important understanding
the dynamics of human population is. This
project attempts to analyze and understand the
growths of a population and the migrations of
people across the world. Through
understanding how human populations
develop, we can predict changes in the future.

Introduction
The human population of the world is now at 6
billion and counting. It is constantly growing,
constantly moving. To even try to use human
power to analyze all of this data would require
thousands of people and thousands of hours of
man power to complete. By using computers,
we can drastically cut down on the man power
needed.

This project can be useful for a great variety of
problems. Most prominently, the US takes a
census report every ten years. But every
decade in between, the census department
uses the data gathered to estimate population
values. A dynamic model such as the one this
project would achieve would be invaluable in
assisting their efforts.

Background
"Human Population Dynamics Revisited
with the Logistic Model: How Much Can
Be Modeled and Predicted?" - The
researchers attempt to analyze the
problems and reliabilities of logistics
curves use to model and predict human
populations.
"A Stochastic Population Model Related to
Human Populations" - Uses probabilistic
factors in order to predict population data.
They take into account factors of
marriage, age, sex, and migrations.

Procedure
This project works by calculating a

population growth rate value using population
data for a certain group. First, it starts from the
states level. The growth rate is calculated for
historically rich states such as Virginia and
New York. Then, it moves on to the entire US,
in which it obtains the growth rate for each and
every state. It takes those rates, displays a
graphical representation of the growing
population with it, and calculates the growth
rate of population for the entire country. A
future model of the world will also be created in
a similar fashion. I also plan to add a
migration display to my models. After the
models have been made, we can move on to
the testing.

Testing and Analysis
Testing at a basic level is done by

comparing my project's predicted values with
those of the US census. My predicted values
for that year compared with the census'
should be relatively close. The predicted
values would then be used to craft graphs to
compare with past growth rates.

If my model works correctly, I expect my
graph to look like a J-shaped graph. I also
plan to include in my analysis age pyramids
to analyze reasons for a certain growth rate.
Demographic transition graphs in conjunction
with the age pyramids would be used to show
what the change in growth rate means. And
a somewhat final, conclusive graph would be
used to show the changes in growth rate due
to historical implications, such as the advent
of the developed world.

By Joshua Choi
TJHSST Computer Systems Lab 2007-2008

4

Programming a
New Sugarscape
By Patrick Coleman

This project studies artificial societies, especially the Sugarscape and
the Schelling segregation model. To implement the Sugarscape, a display of
the sugar-filled environment with agents is outputted. The simulation allows
agents to harvest sugar, consume sugar, die of starvation, and die of old age
and allows the environment to grow back at a given rate. To implement the
Schelling segregation model, two distinct groups of agents are added to the
environment with a preference for neighbors of their own kind to determine the
effects of the individual preferences on the society at large. The reasons these
two projects are being implemented is because while both are often
compared, the two models in their original forms have not been combined and
analyzed in a single simulation. In addition to displaying the environment,
graphs showing the population growth and wealth distribution are displayed.
These graphs analyze what is occurring in the simulation. Seasons are
implemented to analyze agent migration. The program code is broken up into
files: a main file, an environment file, an agent file, a location file, a display file,
and a simulation file. The conclusions show that the the model conforms to
Axtell and Epstein's models in the areas which were implemented. But more
importantly, it shows that the simulation conforms to real world phenomena
reasonably well.

ABSTRACTBACKGROUND
Growing Artificial Societies: Social Sciences from the Bottom Up written by
Joshua M. Epstein and Robert Axtell and Micromotives and Macrobehavior by
Thomas Schelling define Sugarscape and the Schelling segregation model.
Tony Bigbee from George Mason University has written the Sugarscape in
Java and his code will be used for reference along with the first book primarily.
In the book by Axtell and Epstein Schelling's segregation model is mentioned
and the Sugarscape is built with two separate groups (tribes) which combat
against each other. The results should mirror those of the Sugarscape models
in Growing Artificial Societies. However, once Schelling segregation is
implemented with possibly more than two different colored populations the
results will differ. In all likelihood only two groups will survive in the
long run. The final results will be presented with screenshots of the running
program along with graphs of relationships of variables. It will perform like
previous Sugarscape models. Growing Artificial Societies and Micromotives
and Macrobehavior are two books which are used as references to develop
this project.

RESULTS
It has been determined that the program meets the design criteria in the areas
in which it was implemented. The graphs are what answer many of the
experimental questions. Descriptions of the population growth graph refer to
the section on population growth in Appendix B. In general it follows the shape
of logistic graphs which are proven to be a fairly accurate representation of
population growth. Growth is slow when the population is close to zero and
close to the carrying capacity, and growth is highest at half of the carrying
capacity. The few anomalies reveal certain aspects of the simulation. The
initial portion of slow growth is smaller than the final portion because the
population begins with three individuals instead of one (but starting with one
agent would not completely remedy this). The oscillations near carrying
capacity come from the age limit of agents. It takes longer for the population to
decrease due to dead agents than it does for it to react to the added agents.
The oscillations decrease over time and will eventually disappear. At about
half of carrying capacity the line begins to become jagged instead of fairly
straight like it was earlier in the simulation. This is a result of the
heterogeneous population. In the beginning even agents with low vision and
high metabolism (less fit agents) have room to survive in the regions of
abundant sugar. As the environment fills up only better fit agents can survive
on the fringes, areas with less sugar, so many added agents die quickly. The
effects are even more pronounced as population approaches carrying
capacity. The graph has even more information to offer when seasons are
included. The spikes in the graph represent the winters. The spikes alternate
in intensity because the northern winter is more sevr removing more high
desnity sugar locations. Descriptions of population inequality refer to the graph
in the wealth distribution section of Appendix B. At first a bar graph was used
to represent wealth distribution, but it was replaced with the Lorenz curve.
Both conform to the graphs in Axtell and Epstein's book. They show that
there are very few wealthy agents (agents with a lot of harvested sugar
stored) and many poor agents. In this sense the population is pretty unequal.
The Gini coefficient is a numerical representation of this phenomenon.
A coefficient of zero represents perfect equality and one represents perfect
inequality (one agent has all the wealth). The number is just over .5 showing
that the Sugarscape population is closer to perfect inequality than to perfect
equality. See Appendix B for a display showing Schelling segregation. There
is some segregation at this point. The environment did not split in half as was
expected. The most probable explanation is that this is due to the method of
adding agents. Random colored agents are added to random empty locations.
Asexual reproduction of same-color agents would likely produce better results.

DEVELOPMENT
I. Theory. The algorithm driving the move method of the agents is at the core of the simulation. The agents look out in the four cardinal directions as far as their vision
allows and move one square in the direction of the closest location with the most sugar. If more than one location is optimum, a random direction is chosen. To
incorporate Schelling segregation, locations in which there would be more agents of the opposite color than of the same color are removed from the possible choices.
See the section on agent movement in Appendix A. Agents are added to the environment according to an exponential function which models real life.
The section on population growth in Appendix A shows how the population growth is raphed. The inequality of the population is found using the Gini coefficient.
The Gini coefficient is calculated according to the formula: $1-2*L$ where L is the area under the Lorenz curve, which is calculated using trapezoidal Reiman sums.
The section on wealth distribution in Appendix A shows how the Gini coefficient is calculated and how the Lorenz curve is graphed. Lastly, hemispherical winters
cause agent migration to other high density locations and cause a drop in population.

II. Design Criteria. The goal of the project is to accurately represent the models it is implementing. It follows the Sugarscape design from Growing Artificial Societies by
Axtell and Epstein and the Schelling segregation design from Schelling's book Micromotives and Macrobehavior. The agents and the environment behave as they
should with respect to the aspect implemented so far. The Schelling segregation model will accurately represent Schelling's model as best as possible, but will not be
perfect because concessions will need to be made to allow it to run in the Sugarscape. The information shown in the graphs and the display of the environment will be
compared to the results found by the authors.

III. Materials. The program code was written in Ruby (see http://ruby-lang.org/). Tk toolkit is used for the GUI representation and graphics in the program. A text file
which represents the maximum capacities of sugar in various locations in the environment was used from GMU's Tony Bigbee's files (he wrote a Java version).

IV. Procedures. Currently the program displays the environment, and has the agents move and harvest sugar. The display draws each location in the matrix using a
circle whose radius increases based on the amount of sugar at that location. The display draws the agents as a red circle with the same radius as a location with the
maximum amount of sugar. The display also shows the current time step. The GUI window has a frame containing the canvas and buttons to play/pause, step the
simulation, increase the refresh rate, and to quit the program. The agents themselves choose the closest location with the greatest amount of sugar. If more than one
location matches these requirements, one of them is randomly chosen. Locations with more agents of the opposite color are removed from the choices. Then the
agent harvests the sugar and consumes from his own supply of sugar. At each time step the sugar in the environment grows back by one. The program begins with a
small number of agents and adds to the population using an exponential function so that it reaches carrying capacity. Modifications in the individual agents include an
improved move method, a random age limit, and a variable for red or blue color, to allow for segregation. The GUI window has been modified to include buttons to
change the graph and change the refresh rate. There is a button to change the refresh rate in the display of the environment and of the graphs. The two graphs which
are now displayed are the population growth over time, and the percent of total wealth over the percent of the population (Lorenz curve). To get the population graph, it
keeps track of the length of the array of agents at each time step in the simulation file and cycles through the array of population values in the display file. To get the
wealth graph, it cycles through the array of agents and stores the wealth of each individual agent. Then it sorts this array and cycles through it keeping a running total
to determine percents.

5

Creation of an Air Traffic Simulation Using Agent-Based
Modeling

Sam Eberspacher
TJHSST Computer Systems Lab 2007-2008

Abstract:
As the skies over the United States become increasingly
crowded, airports in the United States are increasingly
stressed to adapt to this increased demand. The goal of
this project is to visually represent the strain on airports
and passengers as a variety of problems generate record
delays. By using agent based modeling, along with real air
traffic information, this simulation may accurately predict
the proliferation of delays through out airports in the United
States.

Background:
The purpose of this project is to visually represent the
proliferation of a delay throughout a system of airports. By
using techiques such as agent based modelling, the
simulation will predict actual delays with decent accuracy.
Additionally by repeating the simulation multiple times, the
simulation generates increasingly accurate results as the
number of trials approached infinity. While a simulation such
as this would take a human enormous amounts of time, a
computer may be able to run a simulation of 24 hours in a
matter of minutes. Due to the scale of the problem, efficiency
will be key for the computer to run the simulation in a timely
matter.

Agent-Based Modeling:
In order to simulate such a large system, this project will use a
technique known as agent based modelling. The deveopment of a
system using agent based modelling is key for the success of the
project. Each agent must interact with other agents in the system in
the most realistic way possible in order to generate the most
accurate results. One benefit of the agent based modelling is that
parameters for interaction between agents define the overall
behavior of the system. This allows the programmer to work on much
smaller problems with the agent in order to alter the overall system.

Geocoding:
Geocoding is a process by which a formatted address such as

6560 Braddock Rd. Alexandria, VA 22312 is converted to a longitude
and latitude. This process is important when dealing with map
information that is displayed on a computer because the computer is
unable to relate formatted addresses so longitudes and latitudes are
used to generate accurate relationships about location.

I found that Google offered free geocoding with a maximum of
5000 requests per day, which was more than enough for th e project.
In order to interact with the Google geocoder, each airport was
geocoded through an HTTP request sent to Google servers. These
servers then interpret the parameters in the URL of the request and
return the ouput specified by the user. The parameters in a request
are as follows:
 • q - The formatted address to be geocoded
 • output - The desired output format (xml, kml, csv, or json)
 • key - Google Maps API key
Sample Request (Key removed for privacy reasons):
http://maps.google.com/maps/geo?q=BWIairport&output=csv&key=API_KEY

Screnshot of Geocoding Results

Results:
RESULTS GO HERE

Also cutting parts of the Geocoder
section and including Embedded
Statistical Analysis section

Screenshot of Simulation Interface

Embedded Statistical Analysis:
Embedded statistical analysis is a done when real time statistics

are needed in a simulation. The program uses data at each time step
to readjust statistical values for the desired population. These
statistics are useful when determining if the system is able to handle
the introduction of new agents or new constraints.

This simulation determines the mean, and standard deviation of
delays from all of the agents under the control of an airport. Using
properties of these statistics, an overall standard deviation and mean
are determined without polling all agents a second time. Tracking the
historical values for the mean and standard deviation then allow for
regression modeling to determine the speed of propagation through
the system. This analysis is particularly useful when changing how
agents interact with one another because the statistics inform the
user whether of not the change is positive.

6

Dynamic Image Resizing
Patrick Elliott

Abstract
The goal of this project is to be able to resize an image without distorting any important
aspects of the image. Commons methods of resizing, including cropping and scaling,

remove or distort some of the image and are thus undesirable. By finding the least
important pixels and removing them, this dynamic resizing can be possible. These can be
found by finding the change of intensity of each pixel to the next and taking away the ones
with a very low change. Using this method, humans should be unable to tell if an image

has been altered.

Background
Edge detection is being researched heavily in modern times. Many teams are trying to

allow computers to see and identify objects. But there is also much research being
conducted about images and modifying them. There is one project called PhotoSynth
that is trying to take a large amount of images from the web, and from them, create a

3D model of whatever the images are of. There is also another project that is very
similar to what I am trying to do, although I have some ideas for my project that they

have not yet implemented.

Methods
Instead of cropping or scaling the image,
both of which would ruin certain aspects,

there is an algorithm that can find only the
least noticeable pixels and remove them so

that a human cannot tell the image has
been altered. This algorithm finds the
gradient magnitude of the image and
removes the pixels with the smallest

change of intensity.
To expand the image (bottom left), the

same method is used, except instead of
removing paths, the program adds a path
next to it with the average values of the

surrounding pixels.

Results
The image above is the original image. The one

below it has been modified by the program. You can
see both the butterfly and the flowers, both of which
look unaltered, whereas scaling would ruin these.
The unnecessary portions of the image have been

removed.

7

abstract

The Application of Image Processing Techniques to
Sign Language Recognition Using a Web Camera

Sign language recognition is the first step in a long road
towards natural language processing, or the ability for a
computer to “understand” naturally spoken language. Such
an invention would drastically lessen the amount of time
require for computer input, maybe even by a factor of two.
This project explores using image recognition techniques
such as edge detection and line detection to identify sign
language in real time, using input from an average web
camera (“webcam”). When research is complete, it is
expected that the program will be able to identify most, if
not all alphanumeric characters with a high degree of
accuracy.

background & introduction
In today’s society, people with hearing and
speaking disorders communicate using sign
language. Through extensive practice and use (as
people gain extensive practice speaking their
native language), sign speakers are capable of
“speaking” as fast as others speak orally, from
200-220 words per minute.
The average computer user types 33 words per
minute when transcribing and a mere 19 when
composing. If the average sign speaker can
communicate using finger spelling at as little as ¼
the pace of regular sign language, they sign 50
words per minute. If they could sign into a
computer, this would be a significant speedup in
computer input.

The image of a hand, to be
captured from a webcam.
Here we use the sign for “5.” Edge

detection

 The hand after
edge detection
and cropping.

Parameterized lines:
L1: (0, 50) → (30, 95)
L2: (10, 45) → (45, 89)
 ...

Endpoints of
the lines found
in the picture.
A theoretical
version is on
the left, and
the program
output is seen
on the right
(red lines are
detected lines)

program
procedures

Line finding

Line interpretation:
Analyzes all of the lines in
a given region and tries to
match them to a finger.

L1
L2

Similar
to pinky

 Final result:
 > ./main
 ...
 Detected char ‘5’

testing & timing
The program will be tested manually: automated
testing would be highly impractical and would
require complex image analysis (which is the
object of my program). An example test would be
running a program five times, and recording the
time taken after each iteration, then manually
viewing the results after all execution is complete.

Sample timing (done by the program):
> ./main
 ...
[DEBUG] Edge detect time: 384ms

by Byron Hood
 March 26, 2008

Line-finding is the first step Line-finding is the first step
towards identifying complex towards identifying complex
shapes in an image. shapes in an image.
You can try this yourself: You can try this yourself:
look at your hand and try to look at your hand and try to
find individual straight lines. find individual straight lines.
Then, imagine what those Then, imagine what those
lines would reveal about the lines would reveal about the
position of your hand if position of your hand if
nothing else about itnothing else about it
was known.was known.

How wouldHow would
youyou recognize recognize
your ring finger?your ring finger?

8

Agent Based Simulation, Negotiation, and Strategy Optimization of
Monopoly

TJHSST Computer Systems Lab 2007 - 2008
Nicholas Loffredo

ABSTRACT

Computers have a difficult time performing common human
tasks, such as learning a language well enough to be able to
"talk" intelligently with someone/something. Monopoly, one of
the most well known and understood board games in the United
States, if not the world, provides a good environment to see
whether or not a computer can "learn" to negotiate through a
number of strategies. It is much simpler than negotiating in the
real world, due to the simplified environment, yet complex
enough that it may be useful as an example of computer
negotiation. By creating a Monopoly simulation with computer
agents playing the game, it can be used as a test bed for these
computer negotiations. The methods used in this test bed, if it
works, could then be applied to more complex computer
negotiation. The agents can be given aggressiveness values for
different negotiation techniques, such as price "stubbornness"
when selling or buying properties from other agents. The results
from running the simulation hundreds of times can then be
graphed to show which strategies are the optimal strategies for
agents.

 INTRODUCTION

Computers currently are unable to perform common human
tasks such as understanding a language well enough to speak it
and effectively communicate. A good example of this is
negotiation. Most humans are able to negotiate with one another
for various goods. Computers, on the other hand, can’t. If
computer were able to negotiate effectively, they could be used in
many situations that currently require people – such as in
diplomacy, selling/buying goods, trading goods, or just negotiating
with other people in general. More importantly, it would allow
people to instruct a robot/computer to negotiate using certain
items and to meet certain goals, instead of hiring people to do it.
These computers would be resistant to common human flaws,
such as anger or impatience.

Making a computer than can negotiate effectively in a limited
environment is a first step towards being able to negotiate in a
more complex one. The game of Monopoly is simple enough that
negotiation should be able to be implemented within a year, yet
complex enough that the method used to achieve the results may
be able to be applied towards real negotiation. By making a
working simulation of Monopoly, a negotiation capability can be
implemented for computer agents that will “play” the game.

Fundamentally, the system must simulate all the rules of
Monopoly. Agents must be able to move around the board based
on the “dice” roll, be able to buy titles they land on, and buy
houses on monopolies they own. Additionally, they should be able
to sell houses and mortgage properties. When an agent lands on
a Chance or Community Chest square, they should receive the
top ‘card’ from a ‘deck’ which was randomly sorted before the
game, and ‘do’ whatever the card says. Furthermore, to explore
the research areas contained herein, agents should also be able
to negotiate with players. In particular, these negotiations will be
based on aggressiveness levels. For example, how far an agent is
willing to drop/raise his initial price in order to complete a
negotiation.

 BACKGROUND

B

Surprisingly, not much research has been done into making
agents for Monopoly that can ‘learn’ the optimal strategy for
negotiation. One of the few existing simulations is one that determines
the probability of landing on each square in Monopoly. This can be
used to see if my Monopoly simulation results correlate to theirs, and
determine whether or not the simulation works correctly. Fortunately,
there has been research done into reinforcement learning, which is
effectively how the agents will learn. Reinforcement learning is when
agents take a number of actions over a course of a game, and then
are basically ‘told’ that they did well (when they won) or they did poorly
(when they lost). Based on this feedback, each agent will try to change
its aggressiveness values (which may involve different strategies) to
find the winning values. Also, agents may learn from the strategies
other agents used, and whether they won or lost, to determine how
their aggressiveness levels should change, which varies from the
traditional approach slightly. There is not a state-of-the-art
reinforcement learning program yet, however. Everything I Need to
Know About Business I Learned from Monopoly, which discusses
various strategies for Monopoly, can be used to see if agents develop
the strategies the book discusses.

 PROCEDURES

 PRELIMINARY TESTING and ANALYSIS

To test my program, an interface was designed to help me spot
errors in the game structure. The game works as it should, with
agents moving around the board, buying properties, paying income
or luxury tax, paying rent on other player’s properties, and correctly
following the instructions on Chance or Community Chest cards.
These were tested by using the interface to watch each step of
agents to ensure that they moved the correct number of squares,
landed on the correct properties, paid rent when necessary, etc.
Agents correctly performed their required actions.

I also tested my program by running it a large number of times
and seeing if the learning agent actually has a higher winning rate
than the random agent.

EXPECTED RESULTS

I expect to be able to find an optimal strategy for Monopoly
based on agent victory rates vs. other agents (and their
strategies). I also expect to find that reinforcement learning can
be applied to Monopoly effectively.

9

Programming Language Translation
Jamie McAtamney

TJHSST Computer Systems Lab
2007-2008

Abstract
With the modern emphasis on program portability and the new need to run
programs on multiple computers in networks or over the Internet, it would
be very useful for C programmers to be able to translate either “legacy” C
programs or newly written programs into Java to make them more portable;
however, currently translation by hand is seen as too tedious and time-
consuming, while computer algorithms to do so are not very accurate. A
combination of keyword search/replace and algorithms to translate C
structs to Java classes and C “include” modules to Java “import” modules
can help alleviate or solve the problem of tedious or inaccurate translations
specifically between C and Java.

The first step of the translation process: The original file (left) is read in and tokenized, and any
syntax-independent lines—such as the main() method—are translated (right).

Background
While the differences among programming languages have been studied
extensively in comparative languages courses and otherwise, little
progress has been made in the area of automated programming
language translation. The problems involved with automated translation
occur because programming languages are too dissimilar for direct
word-for-word translation. Even syntactically similar languages such as C
and Java have differences that make simple search-and-replace difficult.
 For example, while the C char arrays have an analog in Java Strings,
because they are two different data structures the methods for accessing
them are very different, and this discrepancy must be taken into account.
 A related difficulty is C's use of pointers: A “string” in C is not simply an
array of chars, it is a pointer to an array of chars—expressed as
“char*”—which means that one cannot simply copy, compare, or
otherwise manipulate strings in the same way one may manipulate ints
or chars.

Progress and Results
At this point, several translation modules have been implemented:

● Translates primitive types, such as char* to String
● Translates C preprocessor directives (“#include” to “import” and

“#define” to variable declaration)
● Translates C array declarations to Java array constructors
● Translates input and output methods and structures such as

input/output streams and files
● Translates method and module headers
● Translates most packages: math, string, stdlib, stdio, and more
● Handles throwing Exceptions
● Determines whether FILE*s are “input” (should become Scanners)

or “output” (should become PrintStreams) FILE*s
● Determines whether PrintStreams should use print() or append()

based on whether they are opened in C for writing or appending
● Translates basic graphics commands from OpenGL to JOGL
● Translates C structs to Java inner classes

After the translation process: The original file (left) has been translated (right). Note the C
#include statements changing to Java import statements, C array declarations changing to Java

array constructors, and the addition of a class declaration.

Structs in the original file (left) are translated to inner classes, with one example given above
(right). Note the addition of two constructors for the inner class.

10

Analysis of spectro-temporal receptive fields in an auditory neural network
Madhav Nandipati, TJHSST Computer Systems Lab

Abstract

Generating STRFs

Results
Linear Model

Discussion

Neural networks have been utilized for a vast range of
applications, including computational biology. But the
validity of these models remains in question. In the
models of the auditory cortex, for example, the
properties of neuronal populations are hard to fully
characterize with traditional methods such as tuning
curves. Spectro-temporal receptive fields (STRFs),
which describe neurons in both the spectral and
temporal domains, have been obtained in a variety of
animals, but have not been adequately studied in
computational models. The aim of this project is to
address these issues by generating the spectro-
temporal receptive fields on a basic, neural network
model of the early auditory processing stages in the
brain. This novel use of STRFs can be used as a
means of comparison between a model and its
biological counterpart.

Receptive fields have been extensively analyzed in both animals and neural networks
in the visual domain. In the auditory domain, spectro-temporal receptive fields
(STRFs) describe both the spectral and temporal aspects of a neuron. The STRFs
have been used in many types of animals, but have not been explored in a
computational model. This project describes the construction of a neural network of
basic auditory processing and the subsequent testing using STRFs. The neural
network could also serve as a starting point in investigating new therapies for hearing
loss. One possible cortical level treatment for hearing loss is electrode stimulation,
where small electrical currents are delivered to parts of the brain. Another type of
treatment is transcranial magnetic stimulation (TMS). Both of these therapies can be
first tested in neural networks by simulating the effect of brain stimulation.
Researchers would be able to quickly validate the use of the therapy by examining the
properties of the artificial neurons through STRFs.

The current neural network is a two-layer,
forward feeding and linear model of the
early auditory processing stages in the
brain. The first layer is the input layer. The
input to the neural network is a
spectrogram, a graph of frequency v. time,
which was converted from a waveform of
the sound stimulus using a Fourier
transform. The first layer receives one
timestep of auditory information at a time. A
timestep is about 12 ms of auditory
information. The second layer is the output
layer, a matrix product of the input vector
and weight vector. The weights between
the two layers were first set at random
values, then trained using Oja's rule. After
the weights were trained, they were plotted
and analyzed.

0 Time(s) 1

5512 F
requency

0 Time (sec) 1

Phase

Magnitude

Temporal Model

This neural network is also a two-layer
forward feeding and receives time-delayed
inputs from multiple timesteps ago. Each of
these timesteps composes the entire first
layer, which becomes 387 units long (three
timesteps each of 129 units).Using this
configuration, the neural network was
trained using Oja's rule. As with the linaer
model, the weights between the first and
second layers of the model were originally
set at zero-centered, normally distributed,
random values. In addition, the
connections between the artificial neurons
are be created nor eliminated; they are
only modified.

Applications

The receptive fields for the six different artificial neurons are plotted in the figure. The
abscissa represents time after stimulus onset and the ordinate represents frequency.
The bright area of the graph shows where the artificial neuron responds with greatest
intensity. The dark area shows where artificial neuron does not respond to, or
responds very weakly to. The graphs show that the artificial neurons are responding to
distinct frequency ranges. For instance, the STRF for AN 1 shows that the second
artificial neuron responds strongly to frequencies up to 1310 Hz. As the artificial
neurons are connected to higher frequency input units, the receptive fields show that
the artificial neuron also responds to higher frequencies. This result agrees with the
hypothesized outcome.

11

Accurate 3D Modeling of User Inputted
Molecules Using a Hill Climbing Algorithm

Ben Parr

Exported Benzene file

Abstract:
In order to better understand chemistry, chemists

create 3 dimensional models of molecules. In a large
introductory chemistry class, it is too costly to provide each
student with a physical modeling set. Software available online
can also be costly. The goal of my research project is to create
a program that will allow users to generate 3D models of
simple molecules through an intuitive and user friendly
program. After the model is created, the program will then
position the atoms in the molecule correctly by using a Nelder
Mead algorithm. My project will help people, especially
students, better understand the geometry of different
molecules.

Background:
A lot of research has been done on modeling

molecules and the techniques to do so now have become quite
advanced. These programs have become increasingly more
accurate over the years. However, the cost of these programs
has also increased, and now very few people have access to
them. For a beginning chemistry student there are not many
options to play around with molecules and learn their different
geometries.

One of the main features of my project will be the
“Auto position atoms” function. This function will use a Nelder
mead algorithm to minimize the energy of the model. The
Nelder Mead algorithm was created by Nelder and Mead in
1965, and is uses the concept of a simplex in order to minimize
a function in a many-dimensional space. A simplex is a
polytope of N+1 vertices in N dimensions; therefore, it is a
triangle in 2D space and a tetrahedron in 3D space. The
algorithm begins with an original simplex. This simplex can not
be too small, because it could lead to a local search. A simplex
that is too large could a noticeably longer time.

Benzene (C
6
H

6
)

The energy function can be broken up into two parts.
The first part is the distance of each atom to every other
atom. The program will try to maximize this distance because
real atoms do push away from each other. The second part is
making the distances of bonded atoms a specific distance
apart. This distance is specified in a data file and depends on
what two atoms are connected and what type of bond exists
between them. Since the Nelder Mead function tries to
minimize the energy of the system, the minimum energy will
occur when the atoms are as far apart from each other,
except for bonded atoms which are the specified distance
away from each other.

Methods:
Atoms are represented by spheres; bonds are

represented by cylinders. Through inputs from the mouse and
keyboard, users can create atoms and bonds, select and
delete atoms and bonds, import and export models, draw
single, double and triple bonds, choose which element they
want to draw, and position the atoms where they want. The
Nelder Mead function is used to “Auto position atoms.”

Results:
The purpose of my project is to create a free program

that will allow users to easily and intuitively create models of
molecules. Then, after a user finished creating the molecule,
the program will correctly position the atoms. My project
currently allows users to create molecules. A user can also
rotate the model and zoom it in and out. These functions help
users get a better picture of the molecule. I have also finished
programming the Nelder Mead algorithm. The focus for fourth
quarter will be programming the energy function and the
original simplex, and then thoroughly testing the “Auto position
atoms” function.

Nicotine (C
10

H
14

N
2
)

12

TJHSST Computer Systems Lab 2007 - 2008
Automobile Recognition Through the Use of

Image Processing Techniques
by Drew Stebbins

A simple feed-forward, double-hidden-layer neural net

Abstract

Results

Background

Webcam used, and streaming input as viewed with GUI

 Many law enforcement agencies have recently shown interest in
automated automobile recognition and tracking technologies such as
license plate reading or GPS tracking. However, some criminals may
drive vehicles that have false license plates or are not equipped with
GPS tracking devices, making the pursuit of such vehicles difficult. This
project aims to create a computer vision system capable of taking real-
time input from a static camera and identifying passing cars by make
and model in order to assist law enforcement agencies in the tracking of
suspect or stolen vehicles.

Procedure and Methods
At the moment, my final program exists in the form of many individually
compiled component parts. My image processing programs make use of
the Canny edge detector, Hough transform line detector, and my own
vertex detection algorithm. My streaming video input GUI uses the
video4linux API and GTK+ graphical toolkit, and will eventually be
integrated with the code in my image processing programs. My single-
hidden-layer, feed-forward neural net uses the backpropagation learning
algorithm to do simple optical character recognition (I will most likely not
be using a neural net in the final version of my program due to the
advantages of other methods of object recognition). The language I am
doing all of my programming in is C++, which I have selected based on
its fast speed and hardware access capabilities.

Several computer systems currently exist for the tracking of military and
civilian automobiles via License Plate Recognition (LPR) or GPS
technology. Such systems are in use by law enforcement entities such
as US Customs and Border Protection and the UK police, and have
proved very effective in catching criminals. However, these systems fail
when an automobile has fake or no plates, and no GPS tracking device,
and is able to avoid recognition. My system, on the other hand, will be
able to alert law enforcement officers of the presence of any specific
shape, color, or size of vehicle regardless of whether or not it is
equipped with a GPS receiver or the proper license plates. Some
systems already exist that can automatically recognize military vehicles
such as tanks, planes, and armored personnel carriers by their shape,
size, and color. However, in the course of my preliminary research I
found no existing systems capable of automatically recognizing civilian
vehicles such as cars or trucks. My system is similar to preexisting
systems for the automatic detection of military vehicles in that it defines
a certain set of characteristics for comparison, extracts those
characteristics from the image of a single vehicle, and searches
amongst a list of known vehicles and characteristics for a possible
match. The primary difference between previous types of these systems
and my own is that mine is much more precise in terms of characteristics
such as size and shape, and, when completed, will select possible
matches from a much more diverse database.

The various components of my program currently perform as expected,
accurately detecting lines, recognizing handwritten characters, and
displaying video input. The frame rate of my streaming input viewer is
somewhat low, a problem which will have to be addressed before
accurate motion detection can be attempted. I hope to be able to test an
assembled version of my final program on short video segments of cars
in motion by the end of the third quarter.

Output of Canny edge detector

13

Cayley graphs formed by conjugate
generating sets of S_n

Jacob Steinhardt
TJHSST Computer Systems Lab 2007-2008

Poster is on the way

14

Conformal Mapping Using the Schwarz-Christoffel Transform
2007-2008

Evan Warner

January 28, 2008

Abstract

The Schwarz-Christoffel transform is a conformal mapping from
the upper half of the complex plane to a polygonal domain. This
transform allows many physical problems posed on two-dimensional,
polygonal regions, such as heat flow, fluid flow, and electrostatics,
to be solved numerically. This type of problem cannot generally
be solved in closed form; the Schwarz-Christoffel transform pro-
vides an exceptionally accurate method of solution. This project
consists of a software unit that efficiently and accurately calculates
Schwarz-Christoffel transforms and inverses. The program incorpo-
rates graphical, easy-to-use interfaces and will contain resources to
aid in solving physical problems. In addition, research into math-
ematical extensions to the Schwarz-Christoffel transform, such as
the inclusion of simple curves, will be conducted.

Introduction

Many physical problems are expressed as differential or boundary value
problems over a surface. Often, these surfaces are or can be approximated
by two-dimensional polygons. In this specific case, one method of deter-
mining accurate solutions is by taking the polygonal domain to exist in
the complex plane and determining a conformal map, which preserves the
structure of Laplace’s equation, that restates the problem in a simpler do-
main, most often the upper half-plane. The new problem, now easy to
solve analytically or in closed form, is then mapped back to the original
domain. For such polygonal domains, a method of determining the spe-
cific transform needed is provided by the following formula, known as the
Schwarz-Christoffel transform:

f(z) = A

∫ z

0

n∏
j=1

(ζ − xj)
−θj/πdζ +B. (1)

In this formula, ζ is an independent complex variable in the upper half-
plane, the θj are the exterior angles of the polygon, the xj are ’preverticies’
of the mapping (given along the real axis), n is the number of verticies of
the polygon, and A and B are complex constants that specify the location
of the image polygon in the complex plane. The θj must satisfy

n∑
j=1

θj = 2π, (2)

which ensures the completeness of the image polygon [2]. Unfortunately,
the Schwarz-Christoffel formula is not easy to evaluate, and requires both
effective integration algorithms and efficient, convergent nonlinear equa-
tion solvers. Implementation of such numerical routines is not a trivial
problem, and is the subject of this paper.

Background

The Schwarz-Christoffel transform was first discovered independently in
the late 1860s by Elwin Christoffel and Hermann Schwarz. Schwarz used
some of the ideas of the transform to provide a more rigorous proof of
the Riemann Mapping Theorem, which he had previously shown to be in-
complete, but the majority of this work was on a purely theoretical level
[5]. The usefulness of the transform was mitigated by the formula’s un-
wieldiness, as the mappings for all but the simplest domains could not be
calculated in closed form. Numerical estimates, especially for nonsymmet-
ric polygons with four or more verticies, could not be effectively calculated
by hand. Application to physical problems, therefore, was limited at best
until the advent of the computer. A computer algorithm to compute the
Schwarz-Christoffel transform was first written in the 1960s, and others
have been written and modified since then [3].

The first problem in calculating the Schwarz-Christoffel mapping is the
evaluation of the integral given by Eq. (1). The integrand contains sin-
gularities at each of the endpoints of the image polygon, which tend to
render ordinary numerical integration routines either useless or hopelessly
slow. In addition, the presence of negative powers in f means that do-
mains of applicability for each of the subfunctions (ζ − xj)

−θj/π must be
chosen so that the entire domain in and immediately around the image
polygon is meromorphic. Although several quadrature routines have been
used for this problem, the method of choice today is Gauss-Jacobi quadra-
ture, which uses a specially-tailored weighting function to choose points of
evaluation and weights for the points that maximize efficiency. In prac-
tice, the Schwarz-Christoffel formula is altered so that the prevertex xn is
chosen to be both −∞ and +∞ (the values are equivalent for a conformal
map, which acts on the Riemann sphere). This can always be done due to
the extra degrees of freedom contained in Eq. (1). The integrals that must
be evaluated in practice in the course of the Schwarz-Christoffel transform
are of the form ∫ xi

xi−1

n−1∏
j=1

(ζ − xj)
−θj/πdζ. (3)

These integrals can always be written as required for Gauss-Jacobi quadra-
ture; that is, in the form∫ b

a

(z − a)α(z − b)βψ(z)dz, (4)

where α and β are real numbers greater than −1.
The points and weights of a Gauss-Jacobi quadrature are calculated

here using a routine from Numerical Recipes [4] which efficiently estimates
and solves for the roots of the Jacobi polynomials, which form the sample

points just as the roots of the Chebyshev polynomials form the sample
points for standard Gaussian quadrature. These points, however, are uni-
formly calculated in the range [−1, 1], and the integrals must be adjusted
slightly to conform to this range. During the calculation of the preverti-
cies, discussed below, the z in Eq. (4) will be restricted to the real axis;
however, in direct calculations once the preverticies have been found, the z
will generally be fully complex, which must be dealt with by the program.

The second problem is the Schwarz-Christoffel parameter problem,
where the xj in Eq. (1) are calculated. As described in [2], a series of
nonlinear, constrained equations can be formed from the requirement that
the image polygon and the desired polygon be similar (the constants A
and B in Eq. (1) then ensure congruency). Written out, there are n − 3
linear equations in n − 3 unknowns, once the extra degrees of freedom
have been taken care of by arbitrarily giving three of the xj precise values.
Here, as in the literature, we take x1 = −1 and x2 = 0 in addition to the
already-defined xn = ±∞. The equations to be solved are then

|
∫ xi

xi−1

∏n
j=1 (ζ − xj)

−θj/πdζ|
|
∫ x2

x1

∏n
j=1 (ζ − xj)−θj/πdζ|

− |wj − wj−1|
|w2 − w1|

= 0, (5)

where i = 3, 4, ..., n − 1. However, there is an additional complication, as
the order of the preverticies on the real axis matters. The extra constraint
can be expressed as

0 < x3 < x4 < . . . < xn−1 <∞. (6)

The nonconstrained problem is relatively easy to solve; however, the con-
straint prevents a naive application of a Newton’s Method variant to this
problem. To get around this, Trefethen in [3] suggests a simple change of
variables that ensures the inequalities of Eq. (6). Take a new series of
variables, χj, and let

χj = ln (xj − xj−1). (7)

The resulting χj will automatically obey Eq. (6), and the original xj are
found by the simple inverse formula

xj = xj−1 + eχj . (8)

This new set of equations in the χj is readily solved by a variant of New-
ton’s Method that does not require an explicit calculation of the Jacobian
matrix (which would be hopelessly complex), but rather uses progressive
estimates.

Development

The software has been written entirely in Java, although certain routines
may be later written in C to increase speed if there is a bottleneck at any
point in the process. The entire development of the program is designed
to be achieved in stages by attacking the subproblems individually. The
following is a list of classes, with short descriptions, written up to this
point:

• class Complex - this class stores and performs arithmetic on complex
numbers, which are not directly supported by Java. Several of the
methods, including the multiplication and division algorithms, are
designed to run as quickly as possible while avoiding intermediate
overflow and floating-point error propagation. The multiplication
method, for instance, requires only three real multiplications rather
than four.

• class GaussJacobiWeights - this class calculates and stores the sample
points and weights for a given Gauss-Jacobi quadrature over the in-
terval [−1, 1]. This routine uses Newton’s Method to find the roots of
the Jacobi polynomials, which are the sample points for the integral,
and was taken and translated from [4].

• class SchwarzFunction - this class evaluates the integrand of a given
real-valued Schwarz-Christoffel integral, serving as a storage class for
data of this kind.

• class GaussQuad - this class accepts as input ψ, a, b, α, and β from
Eq. (4). For an arbitrary integral in that form, shifting and scaling
the bounds produces the equivalent integral

cα+β+1

∫ 1

−1

(ζ − 1)α(ζ + 1)βψ(cζ +m)dζ, (9)

where b = a+b
2

and c = b−m = m−a. This integral is then evaluated
using the sample points and weights given by the GaussJacobiWeights
class and returned. For any GaussQuad object, varying numbers of
sample points (and thus varying accuracy) are accepted by its inte-
grate() method.

• class RealNewtonRaphson - this class accepts an array of vertices and
calculates the necessary prevertices as well as the constants A and
B from Eq. (1). The method employs a standard Newton-Raphson
method to solve the Eq. (5). At each step, an approximate Jaco-
bian matrix for the function is calculated using a forward-difference
method in each dimension; the step vector is then solved for using
an LU factorization on the equation

Jδ~x = ~f, (10)

where J represents the Jacobian, δ~x the step vector, and ~f the cur-
rent function vector. Note that by employing a forward-difference
method to find the Jacobian, the number of function evaluations can
be cut in half, as the current function vector can be reused in the
Jacobian calculation.

• class ForwardGaussQuad - this class, using already-calculated values
for the prevertices, evaluates the Schwarz-Christoffel integral at a
given point. To minimize error caused by the presence of singulari-
ties near the path of the integral (the singularities at the endpoints
are handled by the Gauss-Jacobi quadrature), the path of integration
is divided recursively such that no segment is closer to a singularity
than one-half its length, a technique employed in [3]. Such recursive
subdivision is known as compound Gauss-Jacobi quadrature.

• class SchwarzChristoffel - this class runs the graphical user interface
and calls RealNewtonRaphson and ForwardGaussQuad when necessary.
The graph itself has the ability to show axes and manually adjust
window parameters.

In future iterations of the project, a new set of routines will be imple-
mented to calculate continuous Schwarz-Christoffel problems. Immediately
following from Eq. (3) above, we have

f ′(z) = A
n−1∏
j=1

(ζ − xj)
−θj/π. (11)

To change this into a continuous problem, we can rewrite this as

f ′(z) = Ae
1
π

∑n−1
j=1 −θj ln (z−xj). (12)

Then, defining the natural logarithm function as single-valued in the up-
per half-plane, except where xi = z, f ′ becomes an analytic function in
the required domain. To formulate the continuous-boundary problem, we
simply replce the sum in Eq. (11) with an integral, and integrate the entire
function to find f(z):

f(z) = A

∫ z

0

e
1
π

∫∞
−∞−θ(x) ln (ζ−xj)dxdζ +B, (13)

where θ(x) represents the amount of turning per unit length on the real
axis, such that ∫ ∞

−∞
θ(x)dx = 2π. (14)

The continuous problem therefore has an extra subproblem to solve,
namely, the solution of the integral equation, Eq. (12), to find θ(x) at
every x.

Expected Results

The purpose of this project is to calculate and display Schwarz-Christoffel
transforms, which conformally map the upper half-plane to an arbitrary
polygon, efficiently and accurately. In addition, additional research into
the Schwarz-Christoffel transform itself, including its extension to curved
target domains, will be investigated. The evaluation of the Schwarz-
Christoffel formula involves several parts, including the efficient calcula-
tion of a certain class of integrals as well as a solver of nonlinear systems
of equations. Solving the continuous-parameter problem will require nu-
merical solutions to a certain class of integral equations.

The first problem, that of numerical integration, has been solved and
refined, and a basic user interface has been designed. The second prob-
lem, that of a nonlinear equation solver to calculate the prevertices, has
also been completed to satisfaction; current research focuses on correct
implementation of the forward transform using given prevertices. Pre-
liminary results indicate the general correctness but inexactitude of the
forward transform in the absence of compound quadrature, especially near
the boundaries of the given polygon. It is hoped that a full implementation
of the compound quadrature will ameliorate these concerns.

The completed program will be useful on several levels: as a teaching
aid, and as a tool for researchers solving certain equations on polygo-
nal regions. Once the basic Schwarz-Christoffel problem is numerically
solved, the program can form an easy basis for testing research in numeri-
cal analysis and mathematics that deals with improving or expanding the
Schwarz-Christoffel transform.

References

[1] Howell, L. H. (1990). Computation of conformal maps by modified
Schwarz-Christoffel transformations. Retrieved September 28, 2007,
from http://citeseer.ist.psu.edu/howell90computation.html.

[2] Saff, E. B., & Snider, A. D. (n.d.). Funamentals of complex analysis
with applications to engineering, science, and mathematics. Prentice-
Hall Engineering/Science/Mathematics.

[3] Trefethen, L. (1979). Numerical computation of the Schwarz-
Christoffel transformation. Retrieved September 28, 2007, from
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/710/CS-TR-
79-710.pdf.

[4] Press W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Nu-
merical Recipes in C, Second Edition. Cambridge University Press.

[5] O’Connor, J.J., & Robertson, E.F. (2001). Hermann Aman-
dus Schwarz. Retrieved November 3, 2007, from http://www-
history.mcs.st-andrews.ac.uk/Biographies/Schwarz.html.

15

