
Computer Systems Lab Senior Research
Project Posters

2007-2008
2nd Quarter vers.

TJHSST

May 8, 2008

1

Projects
7th Period Project Posters

2

Music Analysis
Josiah Boning

TJHSST Senior Research Project
Computer Systems Lab, 2007-2008

Abstract
Although music is one of the most
universal aspects of human culture, it is
very difficult to define. Most definitions of
music have been dependent on
attributes such as rhythm, melody, and
harmony, which are extremely
subjective, so the ability to identify music
has been limited to humans. This project
aims to better define “music” by applying
machine learning techniques to music
analysis and recognition, allowing
computers to autonomously identify
whether a given audio sample is musical
in nature.

Background
Computers have already been used to
perform analysis of music. Research has
shown that different genres of music can
be distinguished by fractal dimension
and that machine learning techniques
could successfully identify musical
genres[2][1]. Other research has
attempted to deconstruct music in terms
of rhythmic and melodic patterns, and
even looked at writing software to
generate music conforming to such
patterns[3]. However, each instrument
has a different sound quality, and
composers write music with these
timbral differences in mind. Simply
analyzing the notes on sheet music
precludes the use of these differences in
the analysis. Audio recordings, in
contrast, allow analysis of exactly what
the composer intended his audience to
hear.

Waveform

Single Fourier Transform
Multiple Fourier
Transforms

Works Cited
[1] Basili, Roberto, Alfredo Serafini, and Armando
Stellato. 2004. ”Classification of Musical Genre: A
Machine Learning Approach.” Presented at the 5th
International Conference on Music Information
Retrieval.

[2] Bigerelle, M., and A. Iost. 2000. ”Fractal
Dimension and Classification of Music.” Chaos,
Solitons & Fractals. 11(14):2179-92.

[3] Leach, Jeremy, and John Fitch. 1995. ”Nature,
Music, and Algorithmic Composition.” Computer
Music Journal. 19(2):22-23.

Fractal Dimension
The equations below are calculated by numeric methods
to yield the fractal dimension of the audio waveform.
Since different genres of music are distinguishable by
their fractal dimensions, it is reasonable to suspect that
music itself might be distinguishable by its fractal
dimesion[2]. The equations are evaluated over discrete
audio data, so their accuracy will be increased by the use
of cubic splines to interpolate between data points and
allow smaller differential values when doing numerical
integration.

Fourier
Transforms

A Fourier transform
decomposes a wave
into its constituent
frequencies. A sine
wave (left) has a
Fourier transform with
a spike at a single
frequency (below left).
The transforms can
also be performed over
several time windows
(below).

lim
0

2− log  1
b−a∫a

b

∣max  f t ∣x−t∣

−min  f t 
∣x−t∣∣dx 

log


lim
0

2− log  1
b−a ∫x=a

x=b

[12 ∫t1=0


∫
t2=0



∣ f xt1− f x−t 2
∣dt1dt2]

1/ 

dx 
log


3

Abstract
This project aims to implement a general purpose library for neural networks in the C
programming language. This library will be well-suited to basic object and pattern recognition
in images, from optical character recognition to shape classification, as well as simple face
recognition.

What are Neural Networks?
An artificial neural network is a computational model which emulates the biological structure of
the brain. It is a system of interconnected virtual neurons which are capable of modifying their
connections, adapting their responses based on accuracy. This modeling of biological
networks has widespread use in the field of pattern recognition and object classification, and is
well suited to tasks such as optical character recognition and junk email filtering.

Implementation
The library for neural networks is entirely implemented in C. There are several structs (shown
below) which allow for a simpler way of keeping track of the network and iterating through it.
Methods have been implemented for initializing networks of arbitrary size, testing said
networks, performing calculations on the networks, and saving and loading the current states
of the networks.

Current Running Behavior
When run, my program initializes a network of specified size, and then sets the weights on
each connection to either a specified or random value. It then saves the network to a specified
filename, and deallocates the memory. It then reads in the values stored in the file, and
initializes a new network from that data. The initNetFromFile method then returns an array of
arrays of neurons, which contains each of the layers, and the values of this newly initialized
network are checked, and then saved to a different filename. The makefile which runs my
program then runs diff on these two files to verify that no data has been lost in the network
saving/loading process.

Sample Code
typedef struct _connection {

float weight;
struct _neuron * from;

} connection;
typedef struct _neuron {

float d;
connection * cons;

}neuron;
neuron* mkneuron(int c) {

neuron* n = malloc(sizeof(neuron));
n->d = 0;
connection * a = malloc(c*sizeof(connection));
n->cons = a;
return n;

}
int saveWeights(char* filename, neuron* hidden, neuron* outputs, int insize,
int hiddensize, int outsize) {

FILE* output;
output = fopen(filename, "wb");
if(output == NULL){

fprintf(stderr, "Error: Unable to open output file for writing.");
exit(1);

}
fprintf(output, "%d\n", insize);
fprintf(output, "%d\n", hiddensize);
fprintf(output, "%d\n", outsize);
int i = 0;
int j = 0;
for(; j < hiddensize; j++) {

for(i=0; i < insize; i++) {
fprintf(output, "%f\n", hidden[j].cons[i].weight);

}
}
i = 0;
j = 0;
for(; i<outsize; i++){

for(j=0; j<hiddensize; j++){
fprintf(output, "%f\n", outputs[i].cons[j].weight);

}
}
fprintf(output, "%s\n", "[End]");
fclose(output);
return 0;

}

Implementation of an
Artificial Neural Network
Library in C Jack Breese

TJHSST Computer Systems Lab
2007-2008

1.1 The Sigmoid Function

1.2 An Example Two-Layer Perceptron Neural Network

Input Layer

Weight Matrix

Weight Matrix

Output Layer

Hidden Layer

Sample Program Run

./fr
Debug: Successfully allocated memory for neural
network.
Value of weights of the hidden layer in Network 1:
 0.450000
Saving neural network, please wait...
Succesfully saved neural network.
Succesfully deallocated memory for network.
Initializing network from file...
Successfully read in file and initialized empty
network.
Value of weights of the hidden layer in Network
initialized from file after network deallocation:
 0.450000
Saving neural network, please wait...
Succesfully saved neural network.
Run diff testfile.test testfile2.test to check for
differences between the first and reinitialized
networks.
diff testfile.test testfile2.test

4

Implementation of Image
Deblurring Techniques in Java

Abstract
Countless numbers of photographs are taken every
day, and inevitably, many images suffer from
some sort of "blurring." A program with the power
to take a blurred image create a much crisper and
clearer "deblurred" form would be immensely
valuable. Law enforcement making out a blurred
photo of the getaway car's license plate, or even a
family attempting to improve the clarity of their
grandfather’s smile would find such a piece of
software useful. In my implementation I attempt to
deblur images suffering from simple types of
motion blur using the alternate domains granted
by the use of Fourier transformations and a basic
understanding of image deconvolution.

Background
In order to reverse the blur on an image, it is necessary to
approach the task mathematically. If the process that blurs
the image is considered a mathematical function, it must be
reversed in order to restore the image; however, to do so, it
is necessary to understand how the image was blurred,
characteristics such as direction, type (motion, out of focus
image, etc.), and magnitude. The best way to approach
such a complex task to is to convert the image into a
different domain. The way in which we normally view
images is known as the spatial domain, but if the image is
converted into a series of sin functions through a
mathematical technique known as a Fourier transformation
it is possible to view the image in the frequency domain.
Once in the frequency domain, it is now possible to perform
more advanced analysis on the image and perform
mathematical operations in a more generalized way. It is
understood that using the Fourier transformation of an
unblurred image and the Fourier transformation of the blur
(a five pixel horizontal line corresponds to a five pixel blur)
with a process known broadly as image convolution
produces the Fourier transformation of the blurred image.
Thus, by performing the inverse, a deconvolution on the
image, the unblurred image can be restored. The most
difficult part of this process is determining what the “blur
factor” was when the picture was taken. In theory, if one
can determine how the image was blurred, it is possible to
unblur the image.

Peter Chapman

Fourier Transformation

Procedure

Rendering Fourier Transformations
The first step is to render the blurred image in the
frequency domain using the Fourier transformation. The
general formula for a Fourier transformation requires a
continuous function. Since an image can seldom be
represented as a continuous function, it is necessary to
treat the image as a set of values in a limited domain. Using
the formula for the discrete Fourier transformation it is
possible render the Fourier transformation of the image. A
2D discrete Fourier transformation requires every single
point to perform a calculation on every other point,
resulting in an extremely slow O(N^3). As a result it is
necessary to use a faster implementation of the Fourier
transformation. The Fast Fourier transformation (FFT) is a
process that allows one dimensional data sets to be
rendered in the frequency domain in O(NlogN) time. Since
the sums in the discrete Fourier transformation can be
separated, a two dimensional Fourier transformation can be
a rendered quickly by applying an FFT to the rows and then
to the columns. The speed of the FFT is derived from the
symmetric nature of the Fourier transformation, allowing
much fewer calculations to be made on the data thus
decreasing the run-time.

Original Image Fourier Transformation

The inverse of the FFT, a step necessary for returning the
deblurred image back to spatial domain, is easily performed by
essentially taking the conjugate of the image in the frequency
domain, realizing that the data resulting from the FFT is a series
of complex numbers; then performing an FFT; and finally
calculating the conjugate once again. The result of the entire
process results in a significance amount of noise for which must
be compensated.

Blur Filter Blurred Image Deblurred Image

Blurring and Deblurring
Although time consuming, properly rendering the Fourier transformations work at
the heart of the blurring and deblurring process, regardless of the method used.
As a starting point, I decided to utilize the simplest image deblurring method
known as inverse filtering. As discussed earlier, blurring, at its most basic level, is
the multiplication of the Fourier representation of the image and the Fourier
representation of some other filter. By dividing, while ensuring that one does not
divide by zero. The result, shown above is fairly accurate, with the exception of a
series of wave-like lines filling the image. This method must have a deblur filter
that is nearly exactly the same as the filter used to blur the image. More
advanced methods of deblurring calculate, or more accurately guess, the original
blur filter; my application is not as advanced, but works well enough to
experiment with the effect of certain filters on certain images. The next step will
be to attempt to preform more advanced techniques of image deblurring.

5

Java 6
Decompiler

Abstract

This project aims to create a
decompiler capable of processing
outputted Java 6 bytecode into
fully-recompilable and
functionally-equivalent source
code.

Reasons for Decompilation

●Finding bugs in program
●Finding vulnerabilities
●Finding malware
●Compiler code verification
●Comprehending algorithms
●Creating interoperability
●Induce customizability
●Porting code
●Create maintainable source code
●Fixing bugs without patching binaries
●Add features to a program

Procedures and Methods

Joshua Cranmer
TJHSST Computer Systems Lab

2007-2008

The decompiler works in a multi-
phased approach. First, the class
file is fully parsed and stored in
memory. Then, the code execution
bodies are processed through
several transformation filters until
readable source code is
produced. Next, various filters are
applied to make the source code
more readable. Finally, everything
is fully decoded and then printed
out into class files.

Example screenshot of
running code. Note the
use of proper
indentation and (not
seen here) proper 80-
character overflow.

Generic signatures are
decompiled, as well as
the recovery of new
variables, and the
decompilation of certain
simple bytecodes.

6

Evolving Motor Techniques for Artificial Life
Kelley Hecker

TJHSST Computer Systems Lab 2007 - 2008

I have created a program for simulating unique
creatures in a 3D environment using co-evolution of
the creatures' mental and physical structures.
Creature data is stored in a one-dimensional
genome consisting of various nodes for each
physical body segment. The brain of the creature is
controlled by neuron modification of sensor inputs.
There is a system for converting genomes to
physical representations to allow for physical
simulation in the environment, and eventual
selection of prime candidates through a genetic
algorithm.

Related Research
Research done by Karl Sims is very similar to

what I wish to accomplish. His work with evolving
creatures led to a variety of organisms specialized in
different areas and had very organic movements.
The creatures were neuron controlled.

Yoon-Sik Shim and Chang-Hun Kim continued
Sims' research and explored the possibility of flying
creatures. They developed and explained a system
of storing genomes as one-dimensional arrays.

Methodology
The simulation stores creatures in genomes in a

way similar to Shim and Kim, however rather than
being an array the structure is more like a tree.
Creatures are controlled by passing joint-angle
velocities received from sensors through neurons to
produce joint velocity values. The data follows a
circular pattern, moving between sensor, neurons,
and effectors (output) each timestep.

The entire simulation will be run by the
Controller object. At the beginning of each
simulation the Controller will create an array of
genomes, and maintain this array throughout. It
also displays the creatures in the physical
environment and measures their fitness levels.
After the fitness levels are compared, the Controller
will manage the reproduction of the creatures and
update the genome array with the next generation.

Each genome is make up of several nodes,
each representing a body segment in the physical
creature. The nodes store physical dimensions for
the limb, a list of connected limbs or children, points
where the segment connects to its parent and
children segments, and the neurons which will
control the joints.

At each time-step the joint-angle values for each
node are measured and passed to the Creature
Genetic Algorithm. This algorithm passes the
sensor values through the neurons for that node
and produces an effector, which will be the joint
velocity. Possible neuron functions are sin, cos,
atan, sum-threshold,sign-of, min, max, if, mem,
saw-wave, log, expt, devide, interpolate, and
differentiate.

My final goal is to create a simulation that can
create a unique variety of creatures with advanced
motor techniques. Since creatures are stored as
genomes it should be easy to allow for both mental
and physical evolution.

There is also a possibility for specialized
creatures. Different fitness tests could be
implemented to select creatures which excel at
different techniques, such as swimming or jumping.

Values
received

from joint-
angle

sensors

Values sent to
the GA, where
they are put
through node's

neurons

Values
become

effectors
and modify

joint
velocity

Image representing the
circulation of data. Data
originates from sensors
measuring interaction with
the environment, and then is
modified by neurons within
each node. Finally, the
modified data is passed to
the joint as velocity values.
The cycle starts over again
when sensors receive new
data after the joints move.

Abstract

Background

Development

At the end of a generation, the best creatures
are chosen based on their fitness value, which is
how far they have moved since the start of the
simulation. The top 20% of creatures are
reproduced asexually (copied directly to the next
generation). The remaining creatures are crossed
over to produce new offspring.

Evolution

Expected Results

An example of
the crossover
process
between two
parent
creatures.

Examples of
possible creature
genomes. When
each creature is
displayed, the
genome tree must
be converted to an
object.

7

First-Person PacMan
by Brett Jones

TJHSST Computer Systems Lab 2007-2008

Abstract

The purpose of this project is to create a
3D, first-person version of the classic
PacMan arcade game in order to learn
more about the concepts of 3D graphics
programming and rendering algorithms.
The project will also include a basic AI to
control the ghosts.

Background

The field of 3D computer graphics has
been explored quite extensively, and
comprises of three major parts: 3D
modeling, animation, and 3D rendering.
The first part, 3D modeling, refers to
creating a 3D representation of an object.
Animation, the second part, is moving the
object through time. The final part, 3D
rendering, is drawing the animated 3D
model to the screen. 3D rendering is the
most complex of the three parts, and is
accomplished through several algorithms:
polygon modeling, ray tracing, ray casting,
or scanline rendering. This project will
use the ray tracing algorithm, which casts
a ray from the eye through each pixel of
the virtual screen to the environment,
calculating the length of the ray and using
that to determine view distance, and using
the piece of the environment the ray
intersects to determine what to display.

An initial view of the scene, slightly raised and with wall colors
differentiated.

Progress

Currently, the program is coded to run in fullscreen
exclusive mode (FSEM) in order to display the
game over the entire screen. The program runs
without errors and displays the scene objects, and
the view can be rotated. The menu consists of a
title image and seven function buttons: New
Game, Control, Sound, Save Game, Load Game,
High Scores, and Quit. Quit exits the program,
New Game creates an instance of the World class
(which extends Frame) and sets the program to
run in FSEM with the World class as the viewable
display, and the other buttons do not have any
coded functionality. The program displays a black
background with randomly shaded blue cubes (the
wall objects) connected in the fashion of
contiguous walls, and accepts keyboard input for
motion and returning to the main menu. The move
method currently generates runtime errors, but the
turnLeft and turnRight methods work appropriately.

A screenshot of a rotated view in the scene.

A screenshot of the scene’s initial view, as of 04/02/08.

8

Examining Leadership Dynamics in Agent Based Modeling

Abstract
The project attempts to explore leadership
dynamics in Sugarscape. The goal is to discover
which methods are most frequently used in group
formation, which leadership traits form the best
groups, and which traits are valuable in
followers. This topic was not addressed entirely
by Sugarscape, and thus is a good topic for a
Syslab project. In addition, Sugarscape spends
very little time on combat, and this project
intends to fill this gap as well.

Introduction
I expect to obtain results regarding the
original layout of stats. I suspect that
Wealthy groups will be the largest, and
Intelligent groups will be the best able to
survive.

Background
This area is dominated by the book Growing
Artificial Societies, which was written about
Sugarscape by the creators of Sugarscape. The
Sugarscape model is the state of the art
model in agent based modeling currently. I
could also adapt features from the many agent
based modeling programs created in Swarm or
MASON. However, I still need more research
that is not directly related to Sugarscape.

Development
I have completely coded the combat, vision,
and judgment system for the agents. In
addition, I have made some progress on the
coding for the group functionality. However,
I have encountered a number of bugs in the
programs that determine the sugar and
opponents on surrounding squares, as well as
parts of the movement system. Until these
bugs are resolved, I cannot continue coding
the group functionality.

By Alex McGuigan

Preliminary Results
Due to the bugs in the combat system, I have
been unable to test my combat system. Once I
eliminate these bugs, then I should be able
to test the veracity of my combat algorithm.
I want to examine the presence of wealth in
my combat model primarily.

9

Simulation of the Spread of a Virus
Using Agent Based Modeling

Matt Wade

Abstract
My goal is to make an agent based modeling

simulation that shows the spread of a cold through a
school. It will start with an amount of infected students
and healthy students received as inputs and will show
how much the virus spreads or possibly recedes over
time. The program will answer the question as to how
quickly and fully different types of sicknesses will be able
to spread through the population of a school once
introduced. This will show how likely it is for a disease to
be spread by a set amount of sick people coming to
school with the sickness. This will show if the danger of
infecting others is actually a valid excuse not to come to
school or if you should come to school unless you
actually don't feel like you will be able to do work.

Expected Results
My program will answer the question as to how

quickly and fully different types of sicknesses will be able
to spread through the population of a school once
introduced.

This will show how likely it is for a disease to be
spread by a set amount of sick people coming to school
with the sickness. This will show if the danger of
infecting others is actually a valid excuse not to come to
school or if you should come to school unless you
actually don't feel like you will be able to do work.

At the moment my program is pretty much in its final
state in terms of the actual simulation. All of the methods
relating to the simulation, such as step(),
checkinfection(), or checkrecovery(), are all completed
and working as they should. This means that the results I
am getting right now are pretty much the same results I
will have when the whole project is completed except for
any analysis tools that I plan to add to the program, such
as a picture showing the locations of all of the Agents,
and a graph that shows the number of sick and healthy
Agents over time. As of now though, it will give you data
on the number of sick and healthy agents, the total
number of infections and recoveries, the number of steps
taken, and the locations of all the agents.

Procedures
My program has three main classes. An Agent class

which defines what values an Agent will store and how to
construct it. A class that creates the GUI. And the most
complicated of the three, the Model class which is where
all of the calculations occur. In the Model class there is
an arraylist containing all of the Agents in the simulation.
With these Agents the class has to define a step()
function which moves the simulation forward. This
function has to update the locations of all of the agents,
check to see if any of them get infected, and check to
see if any recover from being sick. First it goes through
the list of Agents and moves them all to the next location
in their schedule. In order to check for any new infections
it goes through the entire list of Agents finding each sick
Agent. Whenever it finds a sick Agent it finds any healthy
Agents in the same location and checks a randomly
generated number against the sick Agent's
infectiousness value. If the random number is lower then
the healthy Agent is switched to sick and the method
continues on through the rest of the list. To check if any
Agents recover from sickness it goes through the list
checking the recoverytime value and if it equals zero the
Agent is switched to healthy. The GUI class contains
another important function, the ability to graph data
gathered through the simulation. In the Model class I
added new arraylists to retain information over time for
all of the main variables (number of sick agents, number
of healthy agents, infections per step, etc.). Whenever
the graphing method is called the Model class gets
information from two drop down menus as to which
arraylists are going to be the x and y axis variables and
sends them to the graph class. The graph class then
takes these variables and goes through the arraylist
graphing a scatterplot of the data.

10

Simulating Evolution
by Tasha Wallage

TJHSST Computer Systems Lab
2007-2008Abstract

The main purpose of this program is to accurately
simulate the genetic evolution of a species. It will
attempt to do so using methods such as genetic
mutation, genetic drift, and natural selection by
means of both microevolution and macroevolution.

Background

"Genetic changes do not anticipate a species' needs and those
changes may be unrelated to the selection pressures on the species.
Nevertheless, evolution is not a fundamentally random process."

 Agent-Based Modeling

The actual evolution simulator is an ABMS with the Organism and
Predator classes being the 'agents.' An agent is ``autonomous and self-
directed.'' It can ``function independently in its environment and in its
dealings with other agents.'' Mostly, an ABMS focuses on the
interactions between the agents. In this project, I will be observing both
the interactions between the agents and the interaction between the
agents and their environment.

 Basic Concepts

 A population of any given species is greatly affected by its
environment. This is where an animal will get its food and raise its
young. In order to do this, it has to be well adapted to the environment
it lives, yet also able to change under stress (such as a change from
the norm). This is when evolution will occur. The members of a species
that are best able to handle stress are the ones that will live on to
populate the species; therefore, their young will acquire the ``better''
traits and be able to live in the newly changed environment. The
environment in which a population lives provides resources for the
population such as food and shelter. If there is limited food, then the
environment will only be able to support a given number of species,
meaning that the population will have a max value. The function of the
population over time should be logarithmic, approaching that max
value. However, this is just a basic model of an environment, void of
predators and many other factors that affect the size of the population.
If there are predators, then the population size should oscillate in
accord with the predators (though there is a slight lag in the predator's
population graph).

Procedures/Methodology

Steps to Simulating Evolution
1) Create a changing environment with which

 a species may interact
 2) Create a food source for the species
 3) Create a species with designated traits to

 be tracked
 4) Possibly create an herbivorous species

 and a predator
 5) Define how the species may evolve

 (genetic algorithms)
 6) Track the changes in traits and make

 observations
 7) Adjust the model until a balance is

 achieved
Algorithms

1) Process for Recombination
The process for creating a new

organisms with a new combination of genes
mixed from its parents (and sometimes
randomly mutated) takes the traits from both
parents and gives the child a trait that is either
equal to one of the parents, or is a mix of the
two (something in between). The assignment
of the trait is semi-random.

2) Randomization for Mutation
The process by which genes are

mutated is completely random. In fact, it is
double random because the swapping of genes
is random and the chance that it is mutated is
also random.

11

Reinforcement Learning in Connect 4

Michael Yura
2007-2008

Introduction:
Although an AI is often thought of

as being only as intelligent as its
programmer, this is not exactly the
case; this project will attempt to
create an dynamically learning
Machine Learner for Connect 4 by
using supervised reinforcement
learning, with each Learner saving
the way that it will play into text
files, each with the way that it will
play for a given board layout.

Procedures:
I have currently

programmed the Connect 4
game itself, as well as
created an “ML” (Machine
Learner) abstract class that
other ML's will be based
upon, with methods to load
save its board data. This ML
appends all of its board data
into a single text file and
saves the corresponding
probability data its own
smaller file, which is
rewritten after the ML plays
a game.

I currently have an ML
that does not change the
way it places pieces, playing
completely randomly; I plan
to create ML's that will
change the way they play to
different degrees, some
radically changing their
strategies after each game,
and others doing so to a
more moderate degree. The
way that each ML changes
its strategy will be written
by myself, meaning that this
is not entirely independent
learning, but Supervised
Reinforcement Learning.

Background:
I expect to have an ML that

throughly and hopefully quickly
learns to play Connect 4 to an
advanced level. Through this
project, I hope to learn how fast and
to what quality reinforcement
learning allows for the learning of a
simple game; these methods can
hopefully be extended to other,
more complex tasks for machines to
learn.

Connect 4 has already been
solved by James D. Allen and Victor
Allis; I will attempt to compare the
way the ML plays to the strategies
outlined in Allis's A Knowledge-based
Approach of Connect-Four

Expected Results:
Through this project, I hope to find a degree of reinforcement

learning that allows the computer to learn to play connect 4
quickly and thoroughly. Although I am quite sure that an ML that
learns more progressively will in the end turn out to be better, it
may not be the most efficient, due to the time and the size that it
would take to create one that would surpass the abilities of an ML
whose data is more hastily created. I hope that this project may
add to the creation process of AI's.

A board of:

Would be represented in the board data
file as:

1 [0,0;0][0,1;0][0,2;0][0,3;0][0,4;0]
[0,5;0][1,0;1][1,1;2][1,2;0][1,3;0]
[1,4;0][1,5;0][2,0;1][2,1;0][2,2;0]
[2,3;0][2,4;0][2,5;0][3,0;0][3,1;0]
[3,2;0][3,3;0][3,4;0][3,5;0][4,0;2]
[4,1;0][4,2;0][4,3;0][4,4;0][4,5;0]
[5,0;1][5,1;0][5,2;0][5,3;0][5,4;0]
[5,5;0][6,0;0][6,1;0][6,2;0][6,3;0]
[6,4;0][6,5;0]

Similarly, a probability data file of:

[94.0,15.6,77.2,92.8,100.0,43.3,0.1,]

Would represent a:

94.0/423.0 (22.22%) chance of placing
in Column 0

15.6/423.0 (3.69%) chance of placing in
Column 1

77.2/423.0 (18.25%) chance of placing
in Column 2

92.8/423.0 (21.94%) chance of placing
in Column 3

100.0/423.0 (23.64%) chance of placing
in Column 4

43.3/423.0 (10.27%) chance of placing
in Column 5

0.1/423.0 (0.02%) chance of placing in
Column 6

12

