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1 Abstract

In modern computing, there are several approaches to pattern and object
recognition. As computational power has increased, artifical neural networks
have become ever more popular and prevalent in this regard. This project
intends to implement a library for the creation of neural networks in C, and
to initialize and train a neural network which can perform recognition of
human faces and facial expressions.

2 Background

2.1 Defining Neural Networks

An artificial neural network is a computational model which emulates the
biological structure of the brain. It is a system of interconnected virtual
neurons. In a perceptron, the type of network which is being implemented
in this project, the network is organized into a hierarchy of layers. The
first layer, or input layer, has one neuron for each input value. Each of
these neurons is connected to every neuron in the next layer, the hidden
layer. The neurons in this hidden layer are, in turn, connected to each of the
neurons in the final, or output layer. The vast computational utility of these
artificial neural networks stems from the adaptability of the system. After
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initialization, the network can be trained. As these networks are capable of
modifying their connections, adapting their responses based on their training,
they become increasingly more accurate as they are trained. This modeling
of biological networks has been used in an ever-increasing number of fields.

2.2 Uses of Neural Networks

Neural networks have found use in a large number of computational disci-
plines. In the field of object and pattern recognition, neural networks are
commonly used to perform such tasks as optical character recognition and
face recognition. Pattern analysis is another field in which neural networks
excel. Bayesian neural networks, for example, have become quite common-
place in filtering for e-mail spam, growing more effective every time a message
is marked as such. In statistics, neural networks can be used to approximate
functions and to interpolate missing data.

2.3 Mathematics and Training of Neural Networks

Perceptron neural networks are broken up into a heirarchy of layers. The first
layer, or the input layer, is relatively simple. It contains one neuron for each
input value the network is to have. Each of these neurons is then connected
to every neuron of the second layer. This second, or hidden, layer allows for
the majority of the computational power of these networks. Each neuron is
connected to every neuron in the previous layer. These connections are given
a weight. The hidden layer neurons take the sum of the values of the con-
nected neurons, multiplied by their respective weights. This sum is then fed
into the activation function, in most cases the sigmoid function f(x) = 1

1+e−x .
The value of the neuron is then the result of this function. These values are
passed along another series of weighted connections to the network’s output
layer. The output layer contains one neuron for each condition the network
is checking for. These neurons function like those of the hidden layer, and
the result of the sigmoid function yields the probability that this condition
has been satisfied.

sgm(x) =
1

1 + e−x
(1)

V alue = sgm(
∑

(NeuronV alue) ∗ (ConnectionWeight)) (2)

2



Figure 1: The sigmoid function.

In training neural networks, a large set of input data is assembled. The
network is initialized with random weights at first, and the data is then fed
into the network. As each data is tested, the result is checked. The square
of the difference between the expected and actual result is calculated, and
this data is used to adjust the weights of each connection accordingly. The
accuracy of neural networks is mostly a function of the size of their training
set rather than their complexity, as shown by a 1964 study. A minimum
number of neurons, connections, and layers is required for a perceptron to
begin modelling accurately. In this study, the number of neurons in the
hidden layer of a perceptron was reduced by 7

8
, yet the network still achieved

80% accuracy after being subjected to the same training.

3 Project Development

This project is coded entirely in C. Currently, it consists of a framework
which uses the libjpeg library to read in jpeg image data, and a framework
for the creation of neural nets. My code has methods to initialize double-
layer perceptron networks of arbitrary size, limited only by the quantity of
allocatable memory. Methods exist to calculate the sigmoid function, take
the sum of the weighted connections, and to randomly initialize the weights
as a precursor to training.
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3.1 Data Structures

In order to implement a neural network effectively, my program makes ex-
tensive use of the C programming language’s structs. As shown in the code
example, there is a neuron struct, which holds the value of each neuron, and
a pointer to an array of connection structs. Each connection struct holds a
float value for its weight, and a pointer to the neuron from which it originates.

typedef struct _connection {

float weight;

struct _neuron * from;

} connection;

typedef struct _neuron {

float d;

connection * cons;

}neuron;

neuron* mkneuron(int c) {

neuron* n = malloc(sizeof(neuron));

n->d = 0;

connection * a = malloc(c*sizeof(connection));

n->cons = a;

return n;

}

3.2 Neural Network Initialization

The use of structs in my program greatly simplifies the network initialization
process. The initNet method creates an array of pointers to neuron structs
of the specified size, and then returns it. Though the current iteration of
the program requires the connections to be set up between layers by the
method calling the initNet function, initNet will eventually be restructured
to recursively initialize the neural network with random weights, preparing
it for training.

neuron * initNet(int size, int csize) {

if(size > MAX_NET_SIZE){

fprintf(stderr, "Error: Exceeded maximum net size");

exit(1);

}
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neuron * a = malloc(size*sizeof(neuron));

int i = 0;

for(i; i < size; i++)

{

a[i] = *mkneuron(csize);

}

return a;

}

3.3 Running Behavior

Currently, my program initializes an array of pointers to an input layer, an
array of pointers to a hidden layer, and an array of pointers to an output layer.
It then iterates over these arrays, creating the connections between these
neurons and assigning them randomly generated or user-specified weights.
After initializing these connections, it then feeds in testing data to the input
layer (at this point, all zeros or ones), and iterates over each neuron in the
network, summing the values of the weighted connection and calcluating the
value of the sigmoid function to pass on to the next layer.

3.4 Results of Testing: Problems and Solutions

In the development of my neural network framework, I encountered signif-
icant delays due to unexpected segmentation faults. Initially, as I went to
calculate the value of my output, my program would add the weighted con-
nections of the first few neurons, and then crash with a segmentation fault.
Further analysis revealed that my program was not successfully iterating
through the array of connection structs. It was only iterating through the
first few, and then receiving a seemingly random memory address. Further
analysis of my code revealed that this was a simple error on my part, as
I had not correctly allocated the memory for this array. After rewriting a
single line of code to correctly allocate a region of memory for this array, my
program began to function as expected.

//Incorrect Code.

neuron* mkneuron(int c) {

neuron* n = malloc(sizeof(neuron));

n->d = 0;
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a = *connection[c];

n->cons = a;

return n;

}

//Correct Code.

neuron* mkneuron(int c) {

neuron* n = malloc(sizeof(neuron));

n->d = 0;

connection * a = malloc(c*sizeof(connection));

n->cons = a;

return n;

}

3.5 Planned Expansion

This project’s next goal is to successfully implement the loading and saving
of weights, as a precursor to writing training methods. Once it is possible
to save the progress that training has made, code will be written which can
adjust the weights based on a given input set of images of known human
faces. Once training is complete on a network to recognize human faces, it
will be possible to undertake more complex pattern recognition tasks with
the same framework.

4 Results

Currently, this project provides an example framework to demonstrate the
structure of neural nets. Though it is successful in that regard, it has yet to
perform actual object recognition or classification. Now that the basic func-
tions exist to create, manage, and use neural networks, it is only necessary to
implement training. A program which successfully classifies photographs as
containing human faces is the next logical step to take once a face-recognizing
network has been trained. A somewhat more advanced network with a larger
training set would be, in theory, capable of recognizing and classifying human
faces based on emotion displayed through facial expressions.
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