
Abstract
Over the course of the year, I implemented a general-use neural network library
in the C programming language. It is capable of creating, managing, saving,
and performing simple training on three-layer neural networks using a
backpropagation heuristic.

What are Neural Networks?
An artificial neural network is a computational model which emulates the biological
structure of the brain. It is a system of interconnected virtual neurons which are
capable of modifying their connections, adapting their responses based on
accuracy. This modeling of biological networks has widespread use in the field of
pattern recognition and object classification, and is well suited to tasks such as
optical character recognition and junk email filtering.

Image 1.2 is a diagram of the basic layout of a two-layer perceptron neural network.
In a task such as face recognition, a neuron is created in the input layer for each
discrete pixel value in the input image. The hidden layer is a layer of neurons used
only in calculation. Each neuron adds up the values in the preceding layer,
multiplied by the weight of each connection in the weight matrix. This process is
then repeated for the output layer, where, after being processed by the sigmoid
function, the output will be a value between 0 and 1, with 1 corresponding to 100%
certainty that the input image matches the condition for that specific output neuron.

Training Neural Networks
My library trains neural networks using a backpropagation algorithm in order to
adjust the weights contained within the weight matrices of the network. In training
networks using the backpropagation model, they must first be first initialized with
random weights. A test image is then read into the network, and each neuron
multiplies the data in the layer before it by the connection’s random weight. The
program then runs the sigmoid function (1.1) on it, in order to simplify the data. A
pseudocode algorithm for training with backpropagation and calculating neuron
values can be found in the code section below.

Implementation
The library for neural networks is implemented entirely in C. There are several
structs (shown below) which allow for a simpler way of keeping track of the network
and iterating through it, as well as simplified management of training data.

Methods exist in this library to initialize two-layer perceptron neural networks of
arbitrary size, read data into them, adjust weights in training, propagate data
through the network, save the network value, and calculate error.

Use and Results
My neural network library can be included in any C program as a header file,
“NNetLib.h” The methods of my library have been tested and verified to work on a
sample training data set released by Carnegie Mellon University (2.1) Though my
library can read in images to the network, and propagate data through the network,
adjust and save weights, due to limitations of the C programming language in the
area of string processing, I have found it difficult to automate the training process,
as the array of strings my library uses to store training image filenames does not
correctly allocate or null-terminate. Ideally, my program would be capable of
classifying images of faces similar to those in the sample set based on their defining
characteristics, such as whether a person is wearing glasses, or looks angry.
Though my library cannot fully complete the training necessary to achieve this, it still
provides a useful set of tools for use in the further exploration of neural networks.

Algorithms
Calculating Neuron Values

For each neuron in the previous layer:
Sum += neuron_weight*neuron_value

neuron_value = activation_function(sum)

Training
For each neuron in the network:

For each connection to the neuron:
weight = random_value()

Until desired accuracy is reached:

For each example in the training data:
actual_out = run_network(example)
exp_out = calculate_expected(example)
error = exp_out – actual out

For each neuron in the network:
calculate_delta_weights(error)
adjust_weights(neuron)

Implementation of an
Artificial Neural Network
Library in C Jack Breese

TJHSST Computer Systems Lab
2007-2008

1.1 The Sigmoid Function
1.2 An Example Two-Layer Perceptron Neural Network

Input Layer

Weight Matrix

Weight Matrix

Output Layer

Hidden Layer

Some Program Methods
and Data Structures

Methods
neuron* mkNeuron(int c)

This method allocates memory for a neuron. C is the number of
neurons in the previous layer that will connect to it.

Neuron* initLayer(int size, int plsize)
This method instantiates a layer of size size, with a weight m
matrix stored for the layer before it, of size plsize.

void calcValue(neuron* n, int s)
This method calculates the value for a neuron based on the
weight matrix it stores and the values of the previous layer.
It should only be called by the calcNet method, never on its
own.

void calcNet(neuron* i, neuron* h, neuron* o)
This method propagates the calculations through the entire
neural network, calling the calcValue method on each neuron.

void readTrain(char* filename, trainInfo * tin, char* zval)
This method reads training data from a structured file,
filename, and reads it into tin. Zval is used in calculating
the expected outputs for a given training data, and is the
type of input file that should produce an output of zero.

void readPGM(char* filename, pImg* pgm)
This method reads in any valid pgm image, filename, to a pImg
struct (which must first be allocated.) It is used in reading
in image data to train and test the neural network.

void backProp(neuron* i, neuron* h, neuron* o, double r, double e)
This method performs backpropagation in order to adjust the
weights on the neural network during the training process.
R is the rate at which training should be performed, and e is
the error from what is expected.

void saveWeights(neuron* i, neuron* h, neuron* o)
This method saves the weight matrices of each layer in the
neural network, so that it can be loaded and used again after
training.

double act(double x)
This method is the sigmoid activation function pictured above.

Data Structures
connection

This struct holds a double weight, and a neuron pointer. It
each neuron holds an array of connections pointing to the
layer preceding it, in order to store the weight matrix.

Neuron
This struct holds a double, d, which stores the neuron’s
value,a double err, which stores the calculated error for
training use, and an array of connections.

pImg
This struct stores a valid pgm formatted image file, including
all attributes, as well as raw ASCII formatted image data.

TrainInfo
This struct stores an array of training image files, as well
as an array of doubles which holds the expected values for
each input file.

2.1 Example Faces from the CMU Sample Training Data

	Slide 1

