
Pathing of multiple units and unit groups in
varied environments

2007-2008

Nicholas Brown
TJHSST

Alexandria, Virginia

June 11, 2008

Abstract

In game design and developement, expecially the areas of it re-
lated to Real Time Strategy Games, the creation of an efficient and
responcive pathing AI are very important to smooth gameplay and an
enjoyable experience. My goal is the creation of an efficient pathing
AI that will respond neatly and effectively to the dynamic changes
that a human user will input in responce to changing conditions. In
adition the AI will alow for the efficient and clean movement and in-
teraction of coherent groups of units which is often lacking in modern
RTS games.
Keywords: Pathing, AI, Game

1 Introduction

I am going to be creating an AI like one that would be used in a Real Time
Strategy Game since pathing AIs in First Person Shooters and other smaller
scale games interact with the three dimentional graphics of the game a great
deal in modern games.

1



2 Background

In the world of gaming with Graphics Processing Units (GPUs) gaining speed
and processing power faster than the average Central Proccesing Unit (CPU)
(see Figure 1 for a comparison of the transistor counts in cutting edge CPU’s
and GPU’s) more and more tasks are being taken off of the CPU and given
to the GPU. At the same time graphic are reaching a point where further
developements are slowing to a crawl. Thus things like game AI are becom-
ming more important and are recieving a greater ammount of attention, from
players and developers. This being the case I intend to generate an interac-
tive environment which places all of the emphasis on the pathing AI which
other AI functions being of secondary concderns and graphal displays not
going beyond what is required for the pathing functions.

Product Name Type Number of Tranistors (in millions)
AMD Athlon 64 X2 CPU 154 m
Intel Core 2 Duo CPU 291 m
Intel Pentium D 900 CPU 376 m
ATI X1950 XTX GPU 384 m
Intel Core 2 Quad CPU 582 m
NVIDIA G8800 GTX GPU 680 m

While many GPUs contain far more transistors than even high end CPU’s
the GPU is often clocked much lower than the CPU as well as having other
limiting factors. However, this does not diminish the significance of these
numbers.

3 What is Dynamic Pathing?

The quinisential pathing problem is the (in)famous traveling salesman prob-
lem in which a salesman must travel to a list of cities. The objective is to
find the most efficient path that takes him to all of the cities and back to his
hime city. The primary difference between my simulation and the set up of
this problem is that the Traveling Salesman Problem has a static environ-
ment. None of the cities move around and there are no other salesmen who
he must avoid. In my dynamic simulation user input and other agents are
both present and both affect the way in which the units behave. Finding

2



an efficient path around a static obstacle is much easier than finding a path
around a dynamic one. This can be attested to by anyone who has ever
attempted to go around someone in the hall only to have them step out of
your previous path and into your new one.

The idea is to find a way for units to efficiently interact with oneanother
and while in the presence of user input (or randomized computer inputs for
large scale testing).

3.1 Units and Obstacles

The units are simple circles since those are the easiest objects to run coli-
sion detection which is important since they will be the most numerous and
dynamic objects in the simulation. The obstacles will range from sphereoids
to multifaceted and deformed polygons. The obstacles will all be randomly
generated within parameters specified by the user. To start units and ob-
stacles will only be set at the beginning of the simulation. Later I plan on
implementing dynamic environment editing which will most likely consist of
more stringent contraints on the placement of objects and units.

4 Results and Discussion

Due to complications resulting from my own inefficiency earlier in the year
and complications in the GUI, which is an integral part of the simulation,
was not completed in time to finish the pathing algorithm. Regardless I
have learned a great deal from this project just not in the area of dynamic
pathing. If I were to re-enter this techlab with the knowledge and wisdom
I have gained during the year then I would probably do a case study of
learning the C++ language. I have also learned a great deal about my own
limitations in the course of this project and I definitely would not run into
the same problems and time constraints if I were to restart this project at
the beginning of the year.

References

[1] Carnegie Mellon University Alexander Nareyek, Guest Researcher. Ai in
computer games. ACM Queue, 1(10), February 2004.

3



[2] Mark Brockington. Pawn captures wyvern: How computer chess can
improve your pathfinding. Game Developer Magazine, June 2000.

[3] Michael Chung and Peter Yap. Replanning paths in a dynamic grid
environment. Project proposal, 2002.

[4] Mark A. Cohen. The development of a game playing framework using
interface-based programming. Crossroads: The ACM Student Magazine,
2004.

[5] Marco Pinter. Toward more realistic pathfinding. Game Developer Mag-
azine, March 2001.

[6] Dave C. Pottinger. Implementing coordinated movement. Game Devel-
oper Magazine, January 1999.

[7] W. Bryan Stout. Smart moves: Intelligent path-finding. Game Developer
Magazine, February 1999.

[8] Rick Strom. Evolving pathfinding algorithms using genetic programming.
Game Developer Magazine, June 2006.

4


