
CAPTCHA Solving With Neural Networks
Tianhui Cai

TJHSST Computer Systems Lab 2007-2008

Abstract
CAPTCHAs, Completely Automated Public Turing tests to tell
Computers and Humans Apart, are tests to determine if a
user is a human or a machine. Variations include audio and
visual CAPTCHAs, which are often found on registration
webpages to prevent automated (spam) registration. The
focus of this project is on visual CAPTCHAs, which consist of
an image with letters or numbers that are to be typed into
a form by the user. The goal of this project is to devise a
system to break a particular CAPTCHA.

Background
A CAPTCHA's purpose is to distinguish between a computer
and a human by presenting a challenge that is easy for most
humans, but difficult for computers. A common example is the
visual CAPTCHA, which is an image with a series of letters
and/or numbers, and a user is prompted to enter its value
into a box. The image often contains distortions to make it
difficult for a computer to read. These distortions include
rotation, translation, scaling, background noise, and color.

For a computer to beat a CAPTCHA, it must identify which
pixels comprise the letters. This is usually done after
removing the background clutter. After the letters are
separated from the image, they must be identified, which is
often done with a neural network.

Neural networks model biological neural systems. Although
each component is simple, because the entire network is
highly connected, neural networks can model highly complex,
nonlinear systems and can be proficient in classification and
pattern recognition.

Research on neural networks has been in existence for several
decades. In particular, the use of neural networks for
classification has been used. Le Cun et al at AT and T
laboratories has demonstrated that with a particular set of
connections with a multi-layered perceptron, handwritten
digit recognition can be done extremely efficiently.

Procedure and Methods
The general procedure for this endeavor consists of several steps.
The first step is the acquisition of the image, which is done by
downloading them from captchas.net. This particular website
provides a free CAPTCHA service, with a formula to tell you what
an image says. The images were downloaded and named with
ruby, with filenames being the sequence of letters depicted in the
image.

The second step is to remove background clutter. In this particular
case, the CAPTCHAs provided contain a lot of black and white
noise, which can be removed with a median filter. In contrast to a
Gaussian blur, it does not blur the image, thus saving fine details
of the image while removing noise. This is done in Java.

The next step is segmentation – separating out the letters from
the background. This must happen after the removal of the
background clutter. It is performed in this project using flood-fill.
Flood-fill has the advantage that it is simple to code. However, it
will not be useful if two letters are conjoined or if a single letter
is broken up into multiple parts. In this scenario, these are not
significant problems and cases in which this happens are thrown
out. This step is also done in Java.

The last step is the identification of the characters that have been
segmented. This will be done with a neural network – a three-layer
backpropagation neural network. It will first be trained on a
training set, so that it learns how to identify characters.
Afterwards, it will be run to identify images using what it has
learned. A key feature of this neural network must be to save the
network into a file, so that it can be loaded and trained multiple
times.

Results and
Conclusion
This section cannot be completed at
the moment.

Testing
The image processing – noise removal – is tested on sample
CAPTCHA images. It works. Saving the neural network works, too.

A set of 50 training images have been downloaded with filename
as the letters depicted in the images. This works.

The neural network is tested by testing it on simple inputs and
outputs, such as AND, OR, and XOR. This works, too.

The next step is to use the outputs of the image processing and
segmentation as the inputs to the neural network for training, and
then for testing.

