
CAPTCHA Solving With Neural Networks
Tianhui Cai

TJHSST Computer Systems Lab 2007-2008

Background
A CAPTCHA's purpose is to distinguish between a computer 
and a human by presenting a challenge that is easy for most 
humans, but difficult for computers. The visual CAPTCHA, 
often an image with a series of letters and/or numbers, 
prompts a user to decipher its message. The image often 
contains distortions to make it difficult for a computer to 
read, including rotation, translation, scaling, background 
noise, and color. 

For a computer to beat a CAPTCHA, it must identify which 
pixels comprise the letters. This is usually done after 
removing the background clutter. After the letters are 
separated from the image, they must be identified, which is 
often done with a neural network.

Neural networks model biological neural systems. Often, 
there is an input layer, an output layer, and possibly many 
hidden layers. The input layer takes in data, the output layer 
gives out data, and hidden layers do intermediate processing. 
Neurons fire with a value between 0 and 1; when a neuron 
receives input, it weights the inputs by neurons connected to 
it, and fires depending on the sum of the weighted inputs. 
Through training, such a network adjusts the weights on each 
layer depending on the error produced. The rate at which a 
network corrects its weights is called the learning rate. 

Because the entire network is highly connected, neural 
networks can model highly complex, nonlinear systems and 
can be proficient in classification and pattern recognition. 

Previous research in this subject has been done for the past 
decades. Sherin M. Youssef and Shaza B. AbdelRahman 
researched license plate recognition in their paper, A Smart 
Access Control Using An Efficient License Plate Location And 
Recognition Approach.

Abstract
CAPTCHAs, Completely Automated Public Turing tests to tell 
Computers and Humans Apart, are tests to determine if a 
user is a human or a machine. Variations include audio and 
visual CAPTCHAs, which are often found on registration 
webpages to prevent automated (spam) registration. The 
focus of this project is on visual CAPTCHAs, which consist of 
an image with letters or numbers that are to be typed into 
a form by the user. The goal of this project is to devise a 
system to break a particular CAPTCHA that can be found on 
captchas.net. 

Procedure and Methods
The general procedure consists of several steps. The first step is 
the acquisition of the image, which is done by downloading them 
from captchas.net. This website provides a free CAPTCHA service, 
with a formula using the URL to tell you what an image says. The 
images were downloaded and named with Ruby, with filenames 
being the sequence of letters depicted in the image.

The second step is to remove background clutter. In this particular 
case, the CAPTCHAs provided contain a lot of black and white 
noise, which can be removed with a median filter. In contrast to a 
Gaussian blur, a median filter does not blur the image, thus saving 
fine details of the image while removing noise. Java was used. 

The next step is segmentation – separating out the letters from 
the background. It is performed in this project using flood-fill. 
Although this method has limitations, it is adequate for this 
purpose. The letters were also scaled and centered in a 9x11 box. 
This step is also done in Java. The images of the letters are turned 
into arrays and outputted into a text file as lines of decimals from 
0 to 1, representing shades from white to black.

The last step is the identification of the characters that have been 
segmented. This is done with a three-layer backpropagation neural 
network. The network is first trained using 1742 letter images, 
read from a text file, so that it learns how to identify those 
characters. Afterwards, it is tested on a new set of 600 different 
letter images, using what it has learned to identify those images. A 
key feature of the neural network is that it can be saved into a file 
and reloaded. 

Testing was done to gauge the effects of learning rate and training 
iterations on accuracy of identification. 

Results and Conclusion
A successfully trained neural network was produced at the end of 
this project. In addition, each component process by itself worked 
– converting a folder of images into a data training set in the form 
of a text file, saving and loading a neural network, and training 
and testing a neural network.

Number of Iterations Accuracy
10000 53.0%
100000 87.2%
500000 91.5%
1000000 91.5%

Learning Rate Accuracy
0.05 86.0%
0.1 87.2%
0.2 91.2%
0.4 87.0%

The accuracy improves with number of 
iterations up to a point after which accuracy stabilizes at a 
maximum. Accuracy also improves with learning rate up to a point 
at which it overshoots, reducing accuracy. The program often 
mistook q’s for g’s and i’s for l’s, probably due to the low quality 
of the images that were fed into it. 

Future versions of this program would be able to deal with more 
distortions, have better segmentation, remove noise more 
efficiently, and implement more sophisticated neural network 
structures. 


	Slide 1

