
Optimizing Parallel Programming with MPI, Computer Systems

Lab, 2007-2008

Michael Chen

April 3, 2008

Abstract

With more and more computationally-intense prob-
lems appearing through the fields of math, science,
and technology, a need for better processing power
is needed in computers. The solution can be found
through parallel processing, the act of linking to-
gether multiple computers and cutting run-time by
using all of them efficiently. MPI (Message Passing
Interface) is one of the most crucial and effective ways
of programming in parallel, despite its difficulty to
use at times. However, there has been no effective
alternate to this date, and continues as the de facto
standard of parallel programming. But technology
has been advancing, and new MPI libraries have been
created to keep up with the capabilities of supercom-
puters. Efficiency has become the new keyword in
finding the number of computers to use, as well as
the latency when passing messages. The purpose of
this project is to explore some of these methods of op-
timization in specific cases like the game of life prob-
lem. Keywords: Message passing interface, latency

1 Introduction

Because of the increasing demand for powerful com-
putations, MPI has become a standard for even com-
panies like IBM, which recently began using their
BG/L supercomputer along with an MPI library to
tackle problems like protein folding. Because of this,
efficiency in parallel programming has become a high
priority, finding what yields the best latency, and
what type of processors can best suit each prob-

lem. For example, IBM tried using coprocessor mode
(both processors calculate the problem), as well as
virtual node (one processor receives and sends data,
while the other is calculation intensive).

Parallel programming is a field that will have much
use in the future. As a programmer, it is important
to reach into bodies of knowledge that will become
important in time, and that includes a thorough un-
derstanding of MPI.

Many hopes for the future lie in this field. Molec-
ular biology, strong artificial intelligence, and ecosys-
tem simulations are just a few of the multitude of
applications which will surely require parallel com-
puting. Though my plans only include optimization
of the game of life problem, it is these basic skills
that carry over into real-world applications, except
on a much larger scale. The processes of automated
testing are becoming increasingly popular, and the
results that my project should yield as a result hope-
fully will point to possible relationships between la-
tency, computation power, as well as the optimum
number of processors to use.

2 Background and review of
current literature and re-
search

Parallel programming is the concept that multiple
processors can be used to split up a task and then
combine the separate parts to enhance processing
speed. With advancements in many fields requir-
ing computation-intensive calculations, parallel pro-

1



gramming has become increasingly popular. This has
been explained in many books such as Introduction
to Parallel Programming as well as Parallel Program-
ming in MPI. In specific, the type of parallel program-
ming being used in this project is message passing,
having computers send and receive data from each
other to complete programs. The first message pass-
ing interface was released in 1994 for Fortran. 14
years later, though it retains much of its old func-
tions, MPI-2 has become a new standard, focusing
more on parallel I/O, dynamic process management
and remote memory operations.

Project ideas that have been explored include tak-
ing images taken from aircraft and placing them on
a map in terms of longitude and latitude, as well as
symbolic computations for recognizing speech and fa-
cial features. The complexity of algorithms and func-
tions ranges greatly and often depends on the effi-
ciency of the code. For example, though master-slave
message passing is probably the easiest to code, it
runs much slower than the divide and conquer strat-
egy. (Figure 1) Whereas the first only has messages
passing between the main computer and slave com-
puters, divide and conquer has each processor com-
municating with any other processor it needs infor-
mation from. But these are still just the basics. As
stated above, companies like IBM are actively search-
ing for new methods to tackle their problems, using
collective and torus networks (that allow quick com-
munication in the least number of steps), and dif-
ferent modes with which to use dual processors. But
because individual computers each have their own la-
tency, the question of how many computers to use as
well as how often and how much to communicate be-
come key issues, ones that I address and attempt to
solve in this project.

Also, a quick overview of the game of life, one of the
projects I am working on. It begins with a board with
a certain number of cells, with each one either alive
(1), or dead (0). It is a very basic simulation of social
interaction, since whether or not each cell lives or dies
depends on the status of the cells around it in all eight
directions. If 4 cells around it are alive, then it dies
from overcrowding. If less than 2 cells are around
it, it dies from overcrowding. It lives if 2 or 3 cells
are alive, and if the cell is currently dead, it comes

back to life (reproduction) when there are 3 cells as
neighbors. Running this repeatedly leads to a series
of interaction between cells that can cause eventual
patterns to form (squares and crosses survive).

3 Development

3.1 Requirements and Limitations,
Overview, Development plan

The project will be deemed successful under a few
conditions. At the beginning of the year and up till
now, it has been to tackle problems and programs
involving MPI, like the wind velocity lab from first
quarter, and Mandelbrot and game of life from second
quarter. However, from third quarter on, the focus
will shift from implementation to optimization. My
goal by the end of the year is to write a program that
can test the run results of two specific problems: the
game of life and heat dissipation problem, which both
use similar cell by cell processing.

The technology demand of MPI will be no prob-
lem to meet, since at TJHSST, all the computers in
the Systems Research Lab are compatible with MPI,
and have enough processing power to suffice for any
computational power I will be using.

3.2 Research Theory

Although I started with programs like embarrassingly
parallel computations, I have moved through more
difficult aspects of coding, namely the divide and con-
quer algorithms. My programs begin with writing a
non-MPI program, and converting it to work in par-
allel. With a clear grasp of the basics of MPI, I can
move on to more difficult tasks, such as automating
the testing as well finding real results within my data
rather than just writing example programs.

Latency has many definitions, but in terms of MPI,
it represents the amount of time a processor has to
wait to receive a message from another processor. In
MPI, this number is essential in making a program as
efficient as possible, and will become a major focus in
the next quarter. Run-times for parallel processing is
basically a combination of two factors: latency and

2



processing power. Depending on which one the com-
puter excels at, a program will be better off either
sending more messages and calculating less per mes-
sage, or sending large messages at once, and spending
more time between messages calculating. Finding the
perfect balance is the problem that is being posed.

3.3 Developmental Procedures

During first and second quarter, I have been following
along with the supercomputing class, which has been
diving into parallel programming with MPI. However,
nearing the end of the 2nd quarter, I decided to break
off, and work more on the game of life program. The
process began with writing the game of life without
MPI, which was done quickly. However, making it
run in parallel was the hard part, hindered by two
problems: Java has been my main language for the
past three years, so I run into syntax errors in C
quite often, and because I encountered problems at
first with sending and receiving in MPI (array sizes
caused problems in the game of life).

The theory behind the game of life with MPI is that
the board will be split by the number of processors
used in calculation. But each section also needed
a limited amount of information from surrounding
areas, and this is where message passing came into
play. My time focused on writing code that would
allow each processor to send one row or one column
to another computer, as well as receive it. This is
also where the latency problem comes into play. If a
computer sends and receives not one, but two rows
and columns at once, then the first time it runs, the
data will be accurate up to the first row. Then, after
being run the second time, the data is accurate inside
the assigned section. Thus, by doubling the amount
passed (or actually more than doubling), the amount
of time needed before information needs to be passed
again is also doubled. (Figure 2) But a limit has to be
drawn eventually. There is little use in, say, passing
the entire board to each cell. Also, when the main
computer receives a print command, it will wait for
all the other computers to send information on its
section, and combine them to display output on the
screen (this is just parent-child).

3.4 Testing and analysis

Because of the nature of MPI, it is not restricted
to certain capabilities, though it does excel at some.
Thus, a variety of possible displays and processes can
be run, and depending on the specifics of each pro-
gramming, different debugging and error analyses are
required. In specific, every program I write needs
to have the number of processors specified. For the
game of life, I am working on a feature that allows the
user to input the exact width and length and number
of cells to start alive (in the form of a percentage),
before the program runs, and also use mouse clicks
to let the simulation run, or to run it step by step.
The heat program will have a similar interface.

But what is important is not what the programs
look like when they run, since they will be the same
if I pass one row or five rows. What is important
is the records of their run-times, which I will try to
write a general program to record, so I dont have
to manually run everything. Fortunately, since the
game of life and heat programs use similar boards
and characteristics, it should be relatively simple to
write one testing program for both of them that will
record speeds based on amount of message passing
vs. amount of internal processing. The final product
will be creating a program that can find the optimal
conditions for a certain problem (in this case, game of
life, though it can be expanded to fit for other prob-
lems). In theory, a graph will be constructed based
on the data I received based on run time correlated
with information passed as well as number of com-
puters. Then, by analyzing this chart and converting
it to a graph, I hope to be able to find a general for-
mula on how to approach similar problems involving
latency.

4 Results, Discussion, Conclu-
sion, Recommendations

4.1 Expected Results

Once again, I am hoping to learn about parallel pro-
gramming more through MPI, a field that will be-
come more important in the future. Even now, there

3



are many research teams comparing and contrasting
different ways of using MPI, including IBMs super-
computing team. For example, one research I read
was exploring the possibility of a graphical interface
called MPI-Delphi for workstation networks that al-
lows quick and easy access for programmers. Even at
the professional level, I read about testing done on
blocking v. non-blocking coordinate checkpointing,
another method of MPI. So whether or not the re-
search I do yields a substantial result this year, or if
I find a direction to follow, the knowledge and skills
I obtain will become indispensable in the future.

The methods and programs to find optimization
pale in comparison to the works that are being stud-
ied by programmers outside of a classroom setting.
But even these simple tests provide an important ba-
sis for problems that are sometimes not more com-
plex, but just much larger in magnitude. Though I
know I will not be able to try the coprocessor and vir-
tual node modes (which require dual processor nodes
on each computer, the one IBM uses has over 65,000
nodes, each dual), by learning from the basics and
working through these ideas, I can grasp the concept
behind research that is going on now and will con-
tinue in the future.

4.2 Results

From my results from the wind velocity lab, the ef-
ficiency in adding number of processors increased,
but steadily increased less until the number hit 8, at
which the processing time increased with each added
computer. From that point on, adding any more pro-
cessors only made the time initializing and passing
messages wasted. However, I do not have informa-
tion to use for the game of life, which is a much more
difficult problem to analyze. That is what I am going
to work on for the majority of third quarter, along
with efficiency of heat dispersion.

The problem with measuring these will be that it
will measure not on the number of processors used,
but also the amount of information passed between
steps (passed every step? Or every three steps?) This
will affect the latency and the amount of processing
that each computer has to do. Depending on which
task the processors are more suitable for, one will

yield better results.

4.3 Future Testing

Even if I do complete my task, there is always more
research to be done. Mr. Torbert has suggested using
latency algorithms and formulas that can be found
online to gauge efficiency and run-times, and there
are many other possibilities to consider as well. Even
so, I have moved my testing and programming more
from the theoretical and experimental, into some-
thing more practical. Although the results I un-
cover may be insignificant compared to the grand-
scale projects that major companies are pursuing,
they have much of the same basics, and will provide
a basis for me in the future to work on, as well as an
idea of how research is formally done.

5 Appendices

Sample Code from Game of Life Lab:

int xymin = 0;
int xymax = max/sqrt(size);
int xs=((int)rank)%((int)sqrt(size));
int ys=rank/sqrt(size);
int xa=xs*xymax;
int ya=ys*xymax;
int n;
int m;
//number here represents how many turns the game goes through
while(flag<10)
{
//all processors make a move (only in their area)
step(xa,ya,xymax,size);
//corners are not covered, need to swap around the passstatements
if (xs>0)
MPI_Send(arr,max*max,MPI_INT,rank-1,tag,MPI_COMM_WORLD);
if (xs<sqrt(size)-1)
MPI_Send(arr,max*max,MPI_INT,rank+1,tag,MPI_COMM_WORLD);
if (ys>0)
MPI_Send(arr,max*max,MPI_INT,rank-sqrt(size),tag,MPI_COMM_WORLD);
if (ys<sqrt(size)-1)
MPI_Send(arr,max*max,MPI_INT,rank+sqrt(size),tag,MPI_COMM_WORLD);
//after sending, all computers waiting for other processes, then processes them
if (xs>0)

4



{
MPI_Recv(rec,max*max,MPI_INT,rank-1,tag,MPI_COMM_WORLD,&status);
for (m=ya;m<ya+xymax;m++)
arr[xa-1][m]=rec[xa-1][m];
}
if (xs<sqrt(size)-1)
{
MPI_Recv(rec,max*max,MPI_INT,rank+1,tag,MPI_COMM_WORLD,&status);
for(m=ya;m<ya+xymax;m++)
arr[xa+xymax][m]=rec[xa+xymax][m];
}
if (ys>0)
{
MPI_Recv(rec,max*max,MPI_INT,rank-sqrt(size),tag,MPI_COMM_WORLD,&status);
for (n=xa;n<xa+xymax;n++)
arr[n][ya-1]=rec[n][ya-1];
}
if (ys<sqrt(size)-1)
{
MPI_Recv(rec,max*max,MPI_INT,rank+sqrt(size),tag,MPI_COMM_WORLD,&status);
for (n=xa;n<xa+xymax;n++)
arr[n][ya+xymax]=rec[n][ya+xymax];
}
//1 if you want to print!
//computers all send print info to main computer
if (rank!=0 && pflag==1)
MPI_Send(arr,max*max,MPI_INT,0,tag,MPI_COMM_WORLD);

//main computer prints
if (rank==0 && pflag==1)
{
for (k=1;k<size;k++)
{
MPI_Recv(rec,max*max,MPI_INT,k,tag,MPI_COMM_WORLD,&status);
int xtemp=((int)k)%((int)(sqrt(size)))*xymax;
int ytemp=((int)k)/((int)(sqrt(size)))*xymax;
int xmax=xtemp+xymax;
int ymax=ytemp+xymax;
for(n=xtemp;n<xmax;n++)
for(m=ytemp;m<ymax;m++)
arr[n][m]=rec[n][m];
}
display();
}
//one step over
flag++;

}

Figure 1

Comparison of Master-Slave and 
Divide and Conquer Methods of 
Parallel Programming in the Game 
of Life

Master-Slave

Divide and Conquer

Figure 2

Accurate data that is 
inside the processor’s 
area

Inaccurate data

Example of Latency vs. Processing Power
a processor before any information is passed

After one row/column has 
been passed

after two rows/columns have been 
passed

Accurate data that is 
outside the processor’s 
area

Before “step”

After “step”

6 Literature Cited

P. Pacheco, Parallel Programming with MPI, M.
Kauffman: San Francisco, California, 1997.

Almsi, G., Archer, C., Castaos, J. G., Gunnels,
J. A. (2005, March). Design and implementation of
message-passing services for the Blue Gene/L super-
computer. IBM Journal of Research and Develop-
ment, 49(2/3), 393-406. Retrieved from ProQuest
database.

Buntinas, D., Coti, C., Herault, T., Lemarinier,
P., Pilard, L., Rezmerita, A., et al. (2008, January).
Blocking vs. non-blocking coordinated checkpoint-
ingnext term for previous term large-scale fault tol-
erant MPI Protocols. Future Generation Computer
Systems, 24(1), 73-84. Retrieved from ScienceDirect
database.

Gregoretti, F., Laccetti, G., Murli, A., Oliva,
G., Scafuri, U. (2008, February). MGF: A grid-

5



enabled MPI library. Future Generation Computer
Systems, 24(2), 158-165. Retrieved from ScienceDi-
rect database.

7 Acknowledgements

Special thanks to Mr. Latimer for help throughout
the year.

Also thanks to Mr. Torbert for help with MPI
with programs like wind velocity and Mandelbrot, as
well as help with Game of Life and ideas for future
projects

6


